
The Software Magazine
$3.00 February 1983 Volume III, No. 9 (ISSN 0279-2575, USPS 597-830)

«T .

**■

5 ••• '<£? •“ -. ■ ' •..,%% iffiy?

■■a» wo . ooaO OW 'M--- '
; --Mi --■Mia

life

It was inevitable.
In the beginning, there was the data base management system. Powerful, but only if you knew
programming. Then came the program generator—anyone could use it, but why bother to generate
poorly written BASIC programs? Now there's the best of both worlds with QUICKCODE™, the

data base program generator.

Power and ease of use.
Fox & Geller's QUICKCODE™ combines power and ease of use in one neat package. It writes consise
dBASE II™ programs to set up and maintain any kind of database. You can run them as is or
customize them in seconds. And you'll still have all the power of dBASE II™ at your disposal: query
language, report generator, and so on. But just as important: you don 't need to do any programming. Just
draw your data entry form on the screen and you're in business. Typical time to set up a customer
list or order file: 5 minutes.

The Wordstar connection.
QUICKCODE™ also gives you the ability to transfer your dBASE II™ data into Wordstar®/Mailmerge™

files for word processing and form letters. So you can get the most from two software bestsellers:
dBASE II™ and Wordstar®.

(Software dealers: DOUBLE YOUR SALES!)

That's not all . . .
There are lots of other features, like form and report generation up to 132 characters wide, four-up
mailing labels, three kinds of data validation, four new data types not found in dBASE II™ itself, data base

keys, and menu generators. You really have to see it to believe it.

It's your move.
Now it's up to you to take advantage of this latest development in software. Why waste any more time
writing programs or paying someone to write them for you?

Fox & Geller's QUICKCODE™: $295.00.

QUICKCODE is now available for the IBM -PC with the Xedex Baby Blue Card.

QUICKCODE

available at Lifeboat Associates

Fox & Geller, Inc.
P.O. Box 1053
Teaneck, NJ 07666
201-837-0142

QUICKCODE is a trademark of Fox & Geller, Inc.
dBASE II is a trademark of Ashton-Tate.
WORDSTAR is a registered trademark of MicroPro International,
San Rafael, California USA.
MAILMERGE is a trademark of MicroPro Internationa!
San Rafael, California USA.
IBM is a registered trademark of International Business Machines.

LIFELINES

The Software Magazine
Publisher and Editor-in-Chief: Edward H. Currie
Production Manager: Harold Black
Art and Design Manager: Kate Gartner
Marketing & Circulation Manager: Patricia Matthews
Typographer: Harold Black
Administrative Assistant: Susan Sawyer

Opinion
2 Editorial

Edward H. Currie

Managing Editor: Patricia Matthews
New Versions Editor: Lee Ramos
Technical Editor: Al Bloch
Technical Consultant: Emil Sturniolo
Cover: K. Gartner
Printing Consultant: Sid Robkoff/E&S Graphics

16 Fullscreen Program Editors for CP/M
Ward Christensen

& Tom -Cochran

18 Cogen — An Application
Development Utility

Joseph Rothstein

21 How to Be a Manipulator (of Z80 data)
Kim West DeWindt

25 Another Chapter In The Continuing
Saga. . . BASIC/Z

Jethro Wright

28 TheNewPL/l
Bruce H. Hunter

CP/M® Users Group
31 Volume 91, Catalogue and Abstracts

Product Status Reports
33 New Products
33 New Publication
34 Book Reviews
36 New Versions

Features
3 Chart of Accounts Program Utilizing

Access Manager
Bruce H. Hunter

9 The Fancy Font System
Charles H. Strom

12 Crosstalk
Davis A. Foulger

Miscellaneous
17 Powerline Filter
27 Change of Address
30 Evolution of Intelligent Life
32 Renew
36 Kibits™
36 Notice
37 OOPS

Copyright © 1982, by Lifelines Publishing Corporation. No portion
of this publication may be reproduced without the written
permission of the publisher. The single issue price is $3.00 for
copies sent to destinations in the U.S., Canada, or Mexico. The
single issue price for copies sent to all other countries is $4.30. All
checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a
U.S. bank; checks, money order, VISA, and MasterCard are
acceptable. All orders must be pre-paid. Please send all
correspondence to the Publisher at the address below.

Lifelines (ISSN 0279-2575, USPS 597-830) is published monthly at
a subscription price of $24 for twelve issues, when destined for the
U.S., Canada, or Mexico, $50 when destined for any other country.

Second-class postage paid at New York, New York, and other loca-
tions. POSTMASTER, please send changes of address to Lifelines
Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028.

Program names are generally TMs of their authors or owners. The CP/M Users Group is not
affiliated with Digital Research, Inc.
Lifelines - TM Lifelines Publishing Corp.
The Software Magazine - TM Lifelines Publishing Corp.
SB-80, SB-86 - TMs Lifeboat Associates.
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT, MP/M, TMs of Digital
Research Inc.
BASIC-80, MBASIC, Fortran 80 - TMs Microsoft, Inc.
KIBITS - TM Bess Garber
Wordmaster & WordStar - TMs MicroPro International Corp.
PMATE - TMs Phoenix Software Associates, Ltd.
Z80 - TM Zilog Corporation
Mr. Edit - TM Micro Resources Corp.
MINCE -TM, Mark of the Unicorn.

Opinion _____________
Editorial Comments Edward H. Currie

Texas Instruments is offering an in-
formation service called TEXNET In-
formation Service, which provides
more than 1200 programs and ser-
vices. Included is UPI News Service,
electronic mail, electronic travel ser-
vice, educational programs, con-
sumer aids, sports news, financial
services, market reports, portfolio
management, international docu-
ment research, Legi-Slate, Compu-
Star, etc.
Using the TI-99/4A, all of the
following are readily available: TI
news, software exchange, voice chat
(a library for owners of the TI voice
synthesizer), phonetic dictionary,
software directory, user's group,
graphics library, music and sound
library, submit (mechanism for users
to submit programs). Thus the push
is on to get home users linked to the
outside world and a host of services
and software.

It is rumored that the FCC has insti-
tuted some digital radio rule changes
effective October 28, 1982, that relax
the limitations on digital transmis-
sions in the amateur bands.

The new limits will be as follows:

The Best Is Yet To Be. . .

The year end was marked by a large
number of frenetic calls from people
wanting to make their microcom-
puter purchase now, to get the best
tax treatment. The IBM PC won out
with virtually no competition. Even
those who were uncertain about the
advantage of sixteen-bits retreated to
the rationale that if IBM produced it,
the IBM PC will be popular for a long
time to come, be well supported and
offer excellent resale value.

The number of portable machines is
on the rise and scores of pseudo IBM-
compatible machines will undoubt-
edly emerge in the months ahead.
Watch out when making your selec-
tion that the machine of your choice
is in fact sufficiently close to the IBM
design to preclude problems particu-
larly with applications involving
graphics and telecommunications.

Be sure to inquire whether or not a
softcard is available for your machine
should you need to run an applica-
tion available only in an eight-bit
configuration.

Don't expect worlds of difference in
execution speed with a program that
you have previously used in an eight-
bit machine. In some cases yes. . . in
many cases no.

As the year ended, Sony announced
the release of the Sony Watchman.
This exciting development is a small
hand-held black/white television
which is otherwise of a plain vanilla
variety; plain vanilla that is except for
one tiny (no pun intended) aspect -
the implementation of a flat screen
CRT. As you recall we have been writ-
ing about this fascinating piece of
technology for some time. The
screen size is approximately 300 mm
measured diagonally and the resolu-
tion is of course excellent. But the in-
teresting thing about this micro-tele-
vision is the innovative flat screen
cathode ray tube employed.

The glass envelope is designed with
a flat surface which the observer
views through to the back side of the
envelope, which is coated with an
electro-luminescent phosphor. The
electron beam which paints the
screen enters this chamber parallel to

the viewing screen and is deflected
towards the back of the envelope.
This is roughly equivalent to viewing
the television in your living room
from inside the tube looking at the
back side of the screen.

So what??? You are undoubtedly
thinking "what's this got to do with
micros???" The answer is that the
truly portable computer is now with-
in our grasp. Consider a machine
with a flat screen CRT approximately
five inches across a diagonal. The
unit would be about one and a
quarter inches thick and roughly the
size of an eight and one half by eleven
inch piece of paper. The memory em-
ployed would be CMOS to minimize
power consumption. Bubble mem-
ory could be employed, but if mem-
ory density continues to increase,
perhaps only RAM would be pres-
ent. The initial system would have
logical mass storage devices similar
to floppies. Later a virtual mass stor-
age device will be assumed as the last
vestiges of floppies fade into the sun-
set. Floppieswill undoubtedly be em-
ployed for some time to come, but
will revert to the role of true periph-
eral devices.

The processor might well be pro-
vided by National Semiconductor
with variable microcoding possible
to permit it to emulate 8080, Z80,
8088, etc., depending on the soft-
ware to be run. An integral modem
will permit telecommunications at
300-1200 Baud. Additional ports will
support printers and high speed I/O
to mass storage devices. An auxiliary
monitor will provide a large screen
console display, if desired.

The price might well be under one
thousand dollars and ultimately be-
tween one and two hundred dollars.
The key here is that the Japanese are
pushing the flat screen technology
and are the world masters of high
volume production of high technol-
ogy devices. But the best part of all is
that this notebook-sized machine
will run all of the existing software
with virtually no modification.
Those of you wondering what the
world of microcomputers will bring
next need wonder no longer.

Bands Max Bit
Rate

Max
Bandwidth

10m 1200 ?
6 19.6K 20khz
2m 19.6K 20khz
1.25+ up 56K 50khz
The new rules also allow non-ASCII
codes to be used, provided that both
stations in a contact are within the
continental United States. This is ex-
citing news, if true, and will hope-
fully mark the advent of repeaters
which will permit widespread trans-
mission of software on a nationwide
basis.

The Z8000 has won a reprieve from
total obscurity with the release of
Olivetti's Z8000-based micro. Inter-
estingly enough an 8086 softcard is
reported to be available as well. This
is the first time that a sixteen bit mi-
crocomputer has been available with
provision for incorporation of an ad-
ditional sixteen-bit microprocessor.
Softcards continue to provide the
bridges to the various vast reservoirs
of software, (continued on page 17)

Lifelines/TheSoftware Magazine, February 1983

Feature Chart of Accounts Program
Utilizing Access Manager

Bruce H. Hunter
normally be accessed. Both are opened as alpha keys in
spite of the fact that the number key could have just as
easily been a numeric. It was left alpha (type 0) to avoid
cluttering the code with the necessary housekeeping to
put the numeric data in reverse byte order and again re-
verse it on return. The account number key has no dupli-
cate suffixes since we would not want to have duplicate
account numbers. On the other hand, the name keys do
have a duplicate key suffix since it is reasonable to assume
that a name can be duplicated. The 11 byte key length will
give a string length of 9 when 2 bytes have been subtracted
for the suffix bytes. Because of the brevity of the key
length, the names "Digital Research, Inc." and "Digital
Equipment Corp." would be both stored as "Digital" (note
the trailing blank is part of the key). Consequently, a dup-
licate key suffix is necessary. It also points out the elusive-
ness of accessing inexact names as opposed to ever so
exact numbers.

MENU

The Program
Since we have covered the majority of the available func-
tions and had so much "fun" with them in two earlier
issues of Lifelines/The Software Magazine, it is a good time to
put them to use. The "Chart of Accounts" program below
is a skeletal data base program to create and maintain a
chart of accounts. A chart of accounts is similar to a mail
list, but its purpose is to correlate the account numbers
with the name and mailing address of the account. It is
used in conjunction with a business system data base, and
its portion of the data base would normally interface with
the payables program of the system. Again, little effort has
been taken to handle errors and bulletproof the routines,
since it would have lengthened the program unnecessar-
ily for the purpose of this article (and possibly obscured
the clarity of the code). Besides, I have put in enough
backwards gotos to invite plenty of criticism without add-
ing more fuel to the fire.
When you are looking at this code, bear its rudimentary
nature in mind, because you aren't going to see any of the
polished error handling and exception processing rou-
tines or any other program essentials and niceties you
would see were it a "real life" program. Also, I hope all you
BASIC and Pascal programmers don't object to my PL/I
source code. (PL/I is particularly appropriate for this arti-
cle because the declarations of PL/I should help in defin-
ing the data types of the variables and parameters.) But re-
member, AM-80 is accessible from all three Digital Re-
search compiled languages (PL/I-80, CB-80, and Pascal
MT +). Even more intriguing is the ability of AM-80 to ac-
cess the same data base from all three languages, so that a
very effective data base system could conceivably be writ-
ten in BASIC, Pascal and PL/I. With the program being
structured "top down," let's start at the top. The declara-
tions, precompiler replacements, and includes are essen-
tially the same as the in-the-chart initialization program
(in the October article), declaring the global variables and
defining the set-up parameters. The first executable line of
the program is a call to the procedure OPEN.

OPEN defines the one data file and the two index files.
The data file consists of the record fields of the data struc-
ture declared in "data __buffer" at the top of the program.
It coincidentally has a record length of 128 bytes, but the
system will take a length of darn near anything. The file
name is "chartdb.dat" and the OPENDAT routine opens it
whether it exists or not. If it does exist, it is not overwrit-
ten. Instead, it is opened for update like any random or
direct file. The program is constructed to automatically
open the files on its (the program's) own opening, and
they must be closed before exiting the program. If the pro-
gram were prematurely closed by a power failure or a
boot, the file directories would not be rewritten. The file
would be corrupted.
There are two index files in use: one for the account name
and the other for the account number. In a "real world"
program for a chart of accounts, these two keys would
Lifelines/The Software Magazine, Volume III, Number 9

The program is menu-driven. Aptly, the first procedure is
menu. The options available are:

Update
Search for an individual account number
Search for an individual account name
List all the accounts by number
List all the accounts by name
Delete accounts
Return the file(s) statistics
Close the files and return to the system

Since PL/I has no true case structure, we sneakily branch
to the choice given by using subscripted labels. The
branch now calls the pertinent procedures. In BASIC it
would have been handled with an ON GOTO branching
to a series of GOSUBs.

UPDATE
Update handles the pedestrian chore of inputting the rec-
ord fields of the data structure "data __buffer", then verify-
ing it before saving the information. The functions
WRTDAT and ADDKEY write the data files and key files.
Note the use of the function NEWREC to return the next
available record number to the program. If a number of
deletions had occurred, it would have taken the data rec-
ord numbers of the deleted records. If there are no dele-
tions, it gives the next available record number straight
away. ADDKEY returns an update code (ud __code) to sig-
nal the successful or unsuccessful addition of a new in-
dex. If no addition has been accomplished, the code
cryptically explains why.
SEARCH-NUMBER
The procedure for searching for a data record by number
is short and to the point. Either an exact match is found for
a key value or it is not. The function GETKEY searches for
the target key, and it returns either the associated data
record number or a zero to signal its failure to do so.
SEARCH-NAME
The procedure SEARCH—NAME is not as

(continued on next page) 3

straightforward as SEARCH__NUMBER. It is burdened
by the fact that names are difficult to match exactly, so an
exact match cannot be expected consistently. This
procedure is lengthy and deserves explanation. Recall we
have chosen a key length of 11 for the name key. A buffer
KEYVAL is initialized with the contents of 11 spaces

/*12345678901*/
idxval "

IDXVAL is passed as an argument to the function SERKEY
and will be overwritten, left justified with the key name. If
found, the remaining 020hs will be padded to the right.

for example: "index
The key value to be searched for (or target key) is also
passed to SERKEY. The routine will now truncate or pad
the name to a length of 11. The function will return either
a data record number or a zero to signify its failure to do
so. Now the number returned is, in fact, the first key that
the system can find that is equal to or greater than the
target key. Were it "A", it would more than likely return the
data record number of the first alpha key in the key file.
Our program takes the data record number returned and
passes it to the procedure PRINT_DATA which prints the
record fields to the screen.
A "sub menu", the search menu, is now displayed to offer
the opportunity of exiting the procedure, or searching
forward or backward in ASCII order through the index
file. Should a backward search be chosen, PRVKEY will
return the preceding key, while NXTKEY will give the
following key. The functions SERKEY, NXTKEY and
PRVKEY join in a powerful trio to overcome the
inexactness of name searching.

LIST—ACCOUNT—NUMBER
This procedure should have been named "list _data
records—by_ account__number," but that's a bit long,
even if PL/I will take a 31 character variable or label name.
The procedure takes no user input. Instead, it im-
mediately sets about getting the first key in the number
key index file. Being a B + tree key file, the keys have been
placed in ascending order. Now they only have to be read
sequentially to return them in sorted ascending order.
The beauty of the B + tree now becomes more apparent.
Once the first key has caused the corresponding data
record to be printed, the program enters a loop to print the
data in each successive key reference by means of the
NXTKEY function. When NXTKEY returns a zero
signaling the end of the index file, the loop is exited.

LIST—ACCOUNT—NAME
This procedure accomplishes the same function as LIST-
ACCOUNT-NUMBER but accesses the name key file
rather than the number key file.

DELETE
The deletion of a data record and its associated keys
should and could be simple and straightforward except
for the difficulty in the inexactness of name keys. In the
procedure DELETE, the user inputs the number to be de-
leted. It is then used as an argument to GETKEY to call the
data record to be displayed for verification. As usual, if a
zero is returned by GETKEY, a scramble ensues to get an-
other number or quit.

Next, the data record is read to get the account name to
pass it to the DELKEY function to delete the index entry.
In a real life programming environment, a much longer
and discriminating algorithm would have to be devised to
4

retrieve the name from the data record, justify and pad it,
iterate the GETKEY routine, and either verify the correct-
ness of the name key or search backward and forward to
be sure to obtain the proper name.

The first deletion takes place removing the account num-
ber key. Next the data record is marked for deletion with
RETREC. It will no longer be available for reading and will
be overwritten by another record number when its num-
ber is picked off the returned record stack. Finally, the last
DELKEY removes the name index.

STATS
Data base statistics are returned in this procedure. NO-
KEYS returns the number of keys in each of the key files.
NMNODS yields the number of nodes. For a more de-
tailed explanation, go back to the explanation of
NMNODS in the main article. The size of the data file in
records is returned by GETDFS.

PRINT—DAT
Print data is a simple procedure to print the data record to
the screen.

ERROR
The error routine is a quick and dirty way to prevent the
program from crashing on an AM-80 initiated error.
Again, in a real world situation, a great deal more pro-
gramming would be required to keep the program on its
feet after encountering an accessing error. To keep from
"re-inventing the wheel,"an error handling macro should
be devised and separately compiled to be linked after the
compilation of the main.

REBUILD
The file rebuilding procedure lurks here at the bottom of
the code, hoping it will never have to be invoked. If the file
has been corrupted, compromised, or otherwise clob-
bered by virtue of the directory not having been updated
since it was opened, the data and index files are effectively
unreadable. The first opening of the data file will detect
this condition, and getting an error 70 from the function
ERRCOD which has no arguments, it will pass control of
the program to REBUILD. This procedure is almost identi-
cal to the opening functions, except that OPNDAT and
OPNIDX have been replaced by OPRDAT and OPRIDX.
The function reconstructs the errant directory entries to
agree to the data base as it existed before it was crunched.
It is a great deal easier to corrupt the file than it appears.
I'm telling you this from hard experience. This is just
about a mandatory set of instructions.

CONVERT
Sounds like there is a missionary hiding around the cor-
ner. BASIC's CHR$() returns a simple ASCII representa-
tion of a number. PL/I does not. The built in PL/I function,
character(), returns an ASCII number padded with blanks
to the left. Convert strips the blanks before returning the
"number."

Parting Comments
Well, that's the program. On the other hand, that is not all
there is to Access Manager. A large number of routines
exist that have not been covered, particularly for multi-
user environments. Data locking and unlocking alone
would be interesting to explore further. Perhaps one of
these days when I get a chance to look at Bill Hogan's new
Godbout MP/M 8-16 system that G & G put together for
him last week, I will get a chance to check out AM-80 in a

Lifelines/TheSoftware Magazine, February 1983

multi-user environment.
Access Manager does everything I hoped it would and
more, and it does it extremely well. It is well written and
thought out. Even the documentation is above standard,
and I have been informed by Digital that it is even being
further clarified in its next printing. A 16 bit version is on
its way, and with it, the new manual. A tip of the Hunter
hat to DRI for a job well done.
Author's Postscript __________________
I hope you have enjoyed or at least have been edified by
the series of articles on Access Manager. I have managed
to get the good people at Digital to send me a copy of their
much advertised and wildly anticipated utility Display
Manager. This will of course be the subject of my next arti-
cle).

/IHHHHHHHHHHHHIHHH«******»***M»*****1f»#»**#**itO»##*»«»»»#//*»»»»«»*»»«*»««««««»««*««#«««»»»»
/******* CHTDB.PLI **»****»**«/
/•***»** CHART op ACCOUNTS *»*»«*»***#//******* program uti l izing DRl's »*«#**#»»»»//******* Access Manager ******»*»*»//******* written *»«***#»*»»/
/******* Oct 3, 32 »»«»»»*»#«»/
/»**»*** by Bruce H Hunter of HUNTER STRUCTURED SOFTWARE *#******»*»//***»**» Copyright(C) 1982 *«»»**«»**»//*»***»* «»» »***»»«****//*************»*#**#*»**»*»»«****»»**it*itif**»O»#»**O»****»»W**it*«******//******* a program to create, update, de le te , and search »**##«**#**//******* chart of accounts files ***»****###//****»*«***««*********»<»***»#»*»»**#***»*#*****»**#***«*»****»***»»»**«»/
/*** *»«/
/*** linkage note: l ink chtdb,am80pl/i .IRLrs,A] ,am80buf .IRL ***//*** ***/

Display Manager is designed to create some pretty wild
screen formatting (including what looks to be some fair
graphics) and will interface with any terminal. 1 am antici-
pating it will do for the front end of my data base business
programs what Access Manager is doing for the data base.
I have been threatening for some time now to write a book
on PL/I-80. It's turning out to be a tutorial, heavily laced
with small easy-to-follow program examples. If you have
anything that you feel you would like to see in the book
please let me know through Lifelines/The Software Magazine.
The book is not intended to be "the definitive text on
PL/I", but rather an easy (as possible) reading volume,
showing what makes PL/I tick, how to make it run, bugs
and error codes, programming tools, etc. I'm looking
forward to your input.

'2 search for account by number',

'3 search for account by name',

'4 list accounts by number',

'5 list accounts by name',

'b delete account ' ,

'7 return statistical data on f i l e s ' ,

'8 close files & return to menu')
(18 (sk ip , co l (24) , a)) ;

retry :
put skip (2) list (' " i input cho ice ') ;
get l is t (cho ice) ;
if choice < 1 I choice > 9 then

goto retry;
goto q(choice) ; /* case */
q (D:
call update;
q(2) :
call search_number ;
q(3) :
call search__name ;
q(4):
call list_account_number;
q(5) :
call list_account_name ;
q(6) :
call dele te ;
q(7) :
call stats;
q(8) :
call close;
s top;

end menu;

open:
proc;
del

record_number fixed,
reply char (1);

put l ist (CLEAR);
put sk ip(4) edi t (

Open Index and Data F i l e ' ,' ************************ ')
(2 (skip , co l (20) , a)) ;/*«/

file_no = -1; /* auto file no assignment */
recd_len = 128;
file_name = 'char tdb.dat ' ;
/* open data file (create or update) */
file_.no = opndat (file_no, no_lock, file_name, recd_len); /* note:

the file_no is optional in single user systems */if errcodO = 70 then
call rebuild;

else
if errcodO ~= 0 then

call err or (3);
data_buf_ptr = addr(data_buffer) ; /* set pointer to buffer */

open index files
*/
name_index = 'name . idx ' ;
nbr_index = ' nb r . i dx ' ;
act_name_len =11 ;
nbr_len = 4;
name_type = 0; /*alpha key */
nbr_type = 0; /*numeric key entered as alpha */
name_dup = 1; /*add duplicate key suffix if necessary */
nbr_dup = 0; /*no duplicate account number suffix */
act_name_key = opnidx (- 1 , name_index , ac t_name_len , narae_type , name_dup) ;act__nbr_key = opnidx(-1, nbr_index, nbr_len, nbr_type, nbr_dup);
call menu;
end open;

chart :
proc options (main);
del

data_buf_ptr pointer ,
1 data_buffer,

3 act_name
3 act_no
3 address ,

5 street
5 city
5 state
5 zip

3 principal

char (32) var,
char (4),

char (32) var,
char (24) var,
char(2) ,
cha r (5) ,
char (24) ;
/* -------

123 byte total */
J replace

MAX_KEY_LEN by 48,
NAME_LEN by 14,
TRUE by ' 1 ' b ,
FALSE by 'O'B,
CLEAR, by " ' 1 ' ;

J include 'am80extr . pli ' ;
del

dummy cha r (1) ,
no_lock fixed,
file_name char(NAME_LEN) var,
(name_index, nbr_index, name_key) char (128)
(n_buf, n_keys, n_sec, n_data_files , erropt, progid, time_out) f ixed,(drn, file_.no, recd_len, act_name_len , nbr_len, name_type) fixed,(nbr_type, name_dup, nbr_dup, act_name_key , act_nbr_key) fixed;

var,

(nbr_type,

njbuf =3 ; /* index file buffers (name & number) *./
n_keys = 2; /* index files */
n_sec =4 ; /* 1024 byte index file record length */
n_data_files = 1;
erropt = 1; /* trap user errors */
progid = - 1 ; /* program assigned id number request , ignored

in a single user system */
time_out = 0;/* background server delay also ignored */no_lock = 0; /* file lock request (no file lock) */
/*******#*****«*«*******»**if*»****it******O*;M***»O**x##*if»
initilize system
*/
progid = intusr(progid, erropt , time_out);
if errcodO ~= 0 then

call e r ro r (1) ;
i f setup (njbuf, n_keys, n_sec, n_data_files) “= 0 then

call error (2);
call open;

menu:
proc;
del

choice fixed;
put l is t (CLEAR);

put skip edit(
' MENU',
*
z z J
'1 update accounts (add records) ' ,

update :
proc:

(continued on next page)
5

Lifelines/The Software Magazine, Volume III, Number 9

'enter * to end search')
(7 (skip, co l (24) ,a)) ;

do while (TRUE);
restart :
put skip (2) list (' en te r name to be searched : ') ;
get edit (target_key) (a);
if targe t_key = then

call menu;
/» 12345678901*/

idxval = ' ' ;
record_number - serkey

(act_name_key , file_no, no_lock, target_key, idxval);
if record_number = 0 then

put skip List (' index out of range ') ;
else

do;
call print_data(record_number) ;
sub_menu :
put skip edit(

Search Menu ' ,
' mmm' ,
'1 exact match found, return to main menu',

'2* exact match found, continue to search ' ,

'3 index too large, return previous record ' ,

'4* index too small, return next record ' ,

del
key_name char (9) var,
(number, reply, ud_code, ud_code2) fixed;

put list (CLEAR);
put skip(4) edit (

Update ' ,
######',

'enter EOF to qu i t ')
(4(skip, col(24), a));

do while (TRUE);
oops:

put skip list ('account name : ') ;
get edit (act_name) (a);
if act_name = 'EOF' | act_name = 'eof ' then

call menu;
on error(1)

begin ;
put skip list ('~g"i numeric input required ') ;
goto redo;
end;

redo:
put skip list ('account number : ') ;
get l ist (number) ;
if number < 1000 ! number > 9999 then

goto redo;
act_.no = convert (number);
put skip list (' s t ree t : ') ;
get edit (street) (a) ;
put skip list (' c i t y : ') ;
get edit (ci ty) (a);
put skip list (' s ta te : ') ;
get list (s t a t e) ;
put skip List (' z ip : ') ;
get list (zip);
put skip list ('principal or contact : ') ;
get edit (principal) (a);
/**/
put skip (3) list ('~i"i*Verification* ') ;
put skip (2) list (actoname, ' * i ' , actino) ;
put skip list (street , ' , c i t y , ' , Es t a t e , ' , Z, z ip) ;
put skip list (principal) ;
put skip (2) list (' enter 1 for corrections : ') ;

get list (reply) ;
if reply = 1 then

goto oops;
drn = newrec (file_.no, no_lock) ; /*

returns the next available data record number */
if errcodO ~= 0 then

call error (3);
if wrtdat(file_no, drn, data_buf_ptr) “= 0 then

call error (4);
/* add key values to key files */
ud_code = addkey (act_name_key , f ile_no , no_lock ,ac t_name ,drn) ;
if ud_code = 2 then

put skip list (' index value ' ,act_name,' all ready in f i l e ') ;
ud_code2 = addkey (act_nbr_key , f ile_no , no_lock ,ac t_no ,drn) ;
if ud_code2 = 2 then

put skip l is t (' index value ' , act_.no, ' a l l ready in f i l e ') ;
end ; /*dowhile*/
call menu;

end update;

'5 quit , return to main menu')
(12 (skip, co l (24) ,a)) ;

retry :
get list (reply) ;
if reply < 1 ! reply > 5 then

goto retry;
goto r (rep ly) ;
end; /* do */
/* case */
r(1):
call menu;
/* */
r(2) :
goto restart ;
/* »/
r(3) :

/* z12345678901//
idxval = ' ' ;
record_number = prvkey

(act_name_key , file_no, no_lock, idxval);
if record_number = 0 then

do;
put l ist (' record out of range ') ;
goto sub_menu;
end; /* do */

call print_data (record_number) ;
goto sub_menu;
/* */
r(4):

/* z12345678901*/
idxval = ' ' ;
record_number = nxtkey

(act_name_key, file_no, no_lock, idxval);
if record_number = 0 then

do;
put list (' record out of range);
goto sub_menu;
end; /* do */

call print_data (record_number) ;
goto sub_raenu;
/* */
r(5) :
call menu;

end; /* do while */
end search_name;
list_account_number :

proc;
del

idxval char (4),
recor-d_number fixed;

search_number :
proc;
del

record_nbr fixed,
targe t_key char (4) var;

put l ist (CLEAR);
put skip (4) edit (

Search by Account Number ' ,
' ************************ '
z z >

'note: enter 0 to terminate search')
(4 (skip, co l (24) ,a)) ;
do while (TRUE) ;

retry :
put skip (2) list ('enter number of account to be searched : ') ;
get list (targe t_key);
if targe t_key = 0 then

call menu;
record_nbr = getkey (act_nbr_key, file_.no , no_lock, target_key) ;
if record_nbr = 0 then

put skip l ist ('no exact match found for ' ,target_key) ;
else
call print_data(record_nbr) ;

end;/*do while*/
end search_number ;

put l ist (CLEAR);
put skip (4) l ist ("'i'iAccounts Listed by Number');
put skip list (" ' i i**#********#*******#***** ,) ;
put skip(4);

/* 1234 */
idxval = ' ' ;
record_number = frskey (act_nbr_key, file_no, no_lock, idxval);
if record_number = 0 then

do;
put skip list (' index file is empty');
call menu;
end; /* do */

call print_data (record_number) ;
do while (TRUE);

record_number = nxtkey (act_nbr_key, file_no, no_lock, idxval);
if record_number = 0 then

do;
put skip l ist ('end of f i l e ') ;
put skip list ('* i press enter to continue') ;
get skip;
goto exit ;
end; /* do */

call print_data (record_number) ;
end; /* do while */
exit :
put skip list ('enter any key to continue ') ;
get list (dummy);

Lifelines/TheSoftware Magazine, February 1983

search_name :
proc;
del

(reply, record_number) fixed,
idxval char (11) var, /* key value found in index */
target_key char (128) var; /* KEYVAL */

put list (CLEAR);
put skip (4) edit (

Search for Account by Name',

'enter the first 11 characters or l e s s ' ,
'of the account name to be searched ' ,

call menu;
end list__account_number;

st_account_name :
proc;
del

idxval char (11) van ,
record_number fixed;

put list (CLEAR);
put skip (4) list (' " i " ! Accounts Listed by Name'):put skip list ('~ri***********»»*********M**‘) ;put skip(4); .

/* 123456/8901 */
idxval = ' ' ;
record_number = frskey (act_name_key , file_.no, no_lock, idxval);
if record_number = 0 then

do;
put skip l i s t (' index file is empty');
call menu;
end; /* do */

call print_data (record_number) ;
do while (TRUE);

record_number = nxtkey (act_name_key , f.ile_.no , no_lock, idxval);if record_number = 0 then
do;
put skip l ist ('end of f i l e ') ;
goto exit ;
end; /* do */
else

call print_data (record_number) ;
end; /* do while */
exi t :
put skip l is t (' en t e r any key to continue ') ;

get l ist (dummy);
call menu;

end list_account_name ;

delete:
proc;
del

keyval char (11) var ,
(number, dat_rcd_nbr) fixed,
answer char(1) ,
numberx char (4) var;

stats :
proc;
del

(number_of_nbr_keys , number_of_name_keys) fixed,
(number_of_nbr_rcds, number_of_name_rcds) fixed,
data_file_size fixed;

put list (CLEAR);
put skip (6) list (' " i " i Data <4 Index Files S ta t i s t ics ') ;
put skip list (' " i " i it****************************') ;put skip (3);
number_of_nbr_keys = nokeys (act_nbr_key) ;
number_of_name_keys = nokeys (act_name_key) ;
number_of_nbr_rcds = nmnods (act_nbr_key) ;
number_of_name_rcds = nmnods (act_name__key) ;
data_file_size = getdfs (file_no) - 1;
put skip (2) list ('number of keys in act. number index file ' ,

nuraber_of_nbr_keys) ;
put skip (2) l ist ('number of keys in act. name index file ' ,

number_of_name_keys) ;
put skip (2) list ('number of records in act. number file ' ,

number_of_nbr_rcds) ;
put skip (2) l is t ('number of records in act. name file ' ,

number_of_name_rcds) ;
put skip (2) list ('number of records in the data file ' ,

data_file_size) ;
put skip list (' en te r any key to continue ') ;
get l is t (dummy);
call menu;
end stats ;

print_data :
proc (dr_number);
del

dr_number fixed;

if readat (file_.no, dr_number, data_buf_ptr) ~= 0 then
call error (99);

put skip (2) l ist (act_name,' ' , act_.no) ;
put skip list (s t r ee t , ' , ' , c i t y , ' , ' , s t a t e , ' , ' , z i p) ;
put skip l ist ('principal or contact, ' principal) ;
return;

end print_data;
put l is t (CLEAR);
put skip (4) l i s t (' " i " iDele te Accounts');
put skip (3);
do while (TRUE);

put skip l i s t (' en te r 0 to exit ') ;
on error (1)

begin ;
put skip l ist ('numeric input required ') ;
goto oh_darn;
end;

oh_darn :
put skip l i s t (' en t e r number of account to be deleted : ') ;
get l ist (number) ;
if number = 0 then

call menu;
if number > 9999 then

goto oh_darn; /*not a legitimate account number */
numberx = convert (number); /*convert to string */
put skip l i s t ('"i"iRecord to be deleted : ') ;
dat_rcd_nbr = getkey (act_nbr__key , file_.no , no_lock, numberx);if dat_rcd_nbr = 0 then

do;
put skip l i s t ('record number ' , number,' not found/ r e t ry ') ;
goto oh_darn;
end;
else

call print_data (dat__rcd__nbr) ;
put skip (2) l i s t (' " i Is this the record to delete? y/n ') ;get list (answer);
if answer = 'y ') answer = 'Y' then

do;
/*
read act_name and pass it to function to
delete the name index record
*/
if readat (file_.no, dat_rcd_nbr, data_buf__ptr) ~= 0 then

call error (98) ;
else

do;
keyval = substr (act_name, 11) ;
end;

if delkey
(act_nbr_key, file_.no, no_lock, numberx, dat_rcd__nbr)
~= 1 then

call no_deletion(1) ;
if retrec (file_.no, no_lock, dat_rcd__nbr) ~= 0 then

call no_deletion(2) ;
if delkey

(act_name_key, file_.no, no_lock, keyval, dat_rcd_nbr)
~= 1 then

call no_deletion(3) ;
end;

end; /* do while */

no_deletion:
proc(no);

del
no fixed;

put skip list ('deletion not sucessful at ' ,no) ;
goto oh_darn;
end no_deletion;

end delete;
Lifelines/The Software Magazine, Volume III, Number 9

proc(location) ;
del

location fixed;
put 3kip(3) edit

('" iError ' , errcodO, ' at code location ' , location)
(a, f(4) , a, f (3)) ;

stop;
end error;

close :
proc;

if elsdat(file_.no) ~= 0 then
call error (6);

if clsidx(act_name_key) “= 0 then
call error (7);

if clsidx(act_nbr_key) ~= 0 then
call error (8);

stop;
end close;

rebuild :
proc;
file_.no = -1; /* auto file no assignment */
recd_len = 128;
file__name = 'char tdb.dat ' ;
name_index = ' name . idx ' ;
nbr_index = 'nbr . idx ' ;
act_name_len = 11;
nbr_len = 4;
name_type = 0; /*alpha key */
nbr_type = 0; /*numeric key entered as alpha */
name_dup = 1; /*add duplicate key suffix if necessary */
nbr_dup = 0; /*no duplicate account number suffix */put list (CLEAR);
put skip (5) list ('Rebuilding corrupted data and index f i l e s ') ;
put skip list ('******<♦*******♦***#**********************') ;
file_.no = oprdat (file_.no, no_lock, file_name, recd_len);if errcod () ~= 0 then

call error (13);
act_name_key = opridx

(-1, name_index, act_name_len , name_type,name__dup) ;
act_nbr_key - opridx (-1, nbr_index, nbr_len, nbr_type, nbr_dup);put skip (4) list (' f i l e s rebuilt - l is t for check of data content ') ;end rebuild;

convert :
proc (number) returns (char (4));
del

(number, position) fixed,
(s tr ing, string out) char (12) var;

string = char (number);
position = verify (s t r ing , ' ') ;
string out = substr (string, position, 4);
return (string out);
end convert;

end chart ; fl|

LIFEBOAT HAS THE ANSWER FOR ALL POPULAR MICROCOMPUTERS
8-Bit Software Available Today - New Additions Regularly

Professional And
Office Aids
Apartment Mngmnt

(Cornwall)
Datebook
Dental Mngmnt (Univair)
Dental Mngmnt-Family

(Univair)
GrafTalk
Insurance Agency

Mngmnt (Univair)
Legal Time Acctng (Univair)
Medical Mngmnt (Univair)
Medical Mngmnt-Family

(Univair)
PAS 3 Medical
PAS 3 Dental
Professional Time Acctng

(PTA)
Property Mngmnt Pkg.

(Am. Soft.)
Property Mngmnt (PTree)
Sales Pro
Wiremaster

Lifeboat After Hours
Backgammon/Gomoku

Educational Tools
Torricelli Author
Torricelli Studio

Disk Operating Systems
APPLI-CARD
BRIDOS
CP/M-8O
MP/M
SB-8O
SoftCard

Hard Disk Integration
Modules

Languages
ALGOL-6O
APL/V8O
BASIC Compiler
BASIC-8O
baZic II
BD Software C Compiler
CBASIC-2
CIS COBOL (Standard)
COBOL-8O
FORTRAN-8O
KBASIC
JRT Pascal
muLISP/muSTAR
Nevada COBOL
Pascal/M
Pascal/MT
Pascal/M +
Pascal/Z
PL/I-8O
Precision BASIC
STIFF UPPER LISP
S-BASIC
Timin FORTH
Tiny-C
Tiny-C TWO
UCSD Pascal
Whitesmiths' C Compiler
XYBASIC

Language and
Applications Tools
BASIC Utility Disk
DataStar
FABS
FABS II
Forms 2 for CIS COBOL
MAG/sam3,4

MAG/sort
M/SORT for COBOL-8O
Programmer's Apprentice
PSORT
QSORT
STRING/8O
STRING BIT
SuperSort
ULTRASORT II
VISAM

Word Processing
Systems and Aids
Benchmark
DocuMate/Plus
Letteright
MagicPrint
Magic Wand
Math*
MicroSpell
SMARTKEY
Spellguard
TEX
Textwriter III
Wordindex
WordStar
WordStar French
WordStar Customization

Notes

Data Management
Systems
CONDOR
dBASE II
THE FORMULA
HDBS
Hoe
MAG/basel,2,3

System Tools
BUG and uBUG
DESPOOL
DISILOG
DISTEL
EDIT
EDIT-8O
FILETRAN
IBM/CPM
MAC
MACRO-8O
MINCE
PANEL
PASM
PLINK
PLINK II
PMATE
RAID
Reclaim
SID
TRS-8O Model II Cast. Disk
Unlock
WordMaster
XASM: 05, 09, 18, 48, 51, 65,

68, 75, 400, F8, Z8
ZAP8O
ZDT
Z8O Development

Package
ZSID

MDBS
MicroSEED
T.I.M. Ill

General Purpose
Applications
CBS
Selector III-C2
Selector IV

Mailing List Systems
Benchmark Mailing List
CBS Label Option Pak
Mailing Address
MailMerge for WordStar
NAD
Postmaster

Financial Accounting
Packages
BOSS Financial

Accounting System
Financial Pkgs. (PTree)
Financial Pkgs. (SSG)
General Ledger Acctng

(Univair)
GLector

Numerical Problem-
Solving Tools
Analyst
fpl
Microstat
muMATH/muSIMP
PLAN8O
SigmaCalc
Statpak
T/MAKER II

Telecommunications
ASCOM
BSTAM
BSTMS
eZmail
muLink-8O
RBTE-8O

*AII 8-bit software requires SB-80 (or other CP/M-80 DOS) unless otherwise stated.

NEW - 16-Bit Software Available for the IBM PC, plus. . .
Professional And Office Aids
Dental Mngmnt Sys. (8000 & 9000)
Insurance Agency
Investment Work Station
Legal Time Acctng.
Medical Mngmnt Series

(8000 & 9000)

Disk Operating Systems
CP/M-86
MP/M-86
MS-DOS (SB-86)-available for OEM
license; available for end-user license
for CompuPro (Godbout)

Hardware
RAMcard

Mailing List Systems
Postmaster

Financial Accounting
Packages
General Ledger

Numerical Problem-
Solving Tools
Math PC
PLAN86
muSIMP/muMATH
SigmaCalc
Statpak
Product names are
generally TMs or
SMs of authors.

Language and
Applications Tools
PSORT
FABS PC

Word Processing
Systems And Aids
WordStar
Mai lMerge
MicroSpell
Spellguard

Data Management
Systems:
dBASE II
MAG/basel,2,3
T.I.M. Ill

System Tools
Emulator/86
EM-8O/86
PMATE-86
UT86
PANEL-86

Telecommunications
ASCOM

Languages
CB-86
CBASIC-86
Lattice C Compiler
muLISP/muSTAR
Pascal MT +-86
PL/l-86
PL/M

*AII 16-bit software requires IBM PC DOS, SB-86, MS-DOS, or CP/M-86 as stated in Lifeboat literature.

ALLBITTMTools Available
Books and Periodicals
APL-An Interactive Approach
Accounts Payable and

Accounts Receivable-CBASIC
CBASIC User Guide
The Computer Glossary
The CP/M Handbook

(with MP/M)
The C Programming Language
Crash Course in

Microcomputing

Introduction to Pascal
Lifelines/The Software Magazine
Pascal User Manual and Report
The Pascal Handbook
The Pascal Primer
Payroll with Cost Accounting

-CBASIC
Structured Microprocessor

Programming
A User Guide To The UNIX System

Using CP/M-A Self-Teaching
Guide

Accessories
Break-Out Box
DC Data Cartridges
Diskette Drive Head Cleaning Kits
Flippy Disk Kit
Floppy Saver
MT25 RS232 Interface

Breakout/Monitor
Vari Clean Cleaning Kit

Devil's DP Dictionary
Discover FORTH
DON'T (Or How To Care For

Your Computer)
8O8O/Z8O Assembly Language

Techniques For Improved
Programming

Executive Computing
Fifty BASIC Exercises
General Ledger-CBASIC

SEND FOR FULL SOFTWARE DESK REFERENCE WITH DESCRIPTIONS OF ALL
THESE PLUS A WHOLE LOT MORE.

LIFEBOAT • 1651 Third Ave. • New York, N.Y. 10028
(212) 860-0300 • TWX: 710-581-2524 • Telex: 640693 (LBSOFT NYK)

Copyright © 1983, by Lifeboat Associates.

Lifelines/TheSoftware Magazine, February 19838

Feature

The Fancy Font System
Charles H. Strom

factory degree of user-friendliness in
that entry of a "?" in response to a
PFONT prompt will display relevent
help information.

In addition to the PFONT param-
eters, there are a number of switches
which can be imbedded in the text
file to be interpreted by PFONT dur-
ing hardcopy output. All of these for-
matting indicators are preceded by a
backslash character (\) as a default or
any other user specified character as
a signal to PFONT that an indicator
follows. Thus one must prepare a
document with these switches in
mind. It is not possible to use all of
the features in WordStar, for exam-
ple, to format a document and then
use PFONT to print it. On the con-
trary, PFONT cannot recognize for-
matting commands from other for-
matters and unpredictable results
would follow. In fact use of the Word-
Star document mode is only possible
if the soft carriage returns and any
other characters with the high bit set
are filtered with the use of PIP with
the Z switch or one of the public do-
main programs such as Keith Peter-
sen's FILTER.COM. It is therefore
easier to use a simple-minded editor
such as Cromemco's screen editor to
enter text destined for Fancy Font.

As mentioned above, up to ten fonts
may be specified in a document.
These are indicated by \fl, \f2, etc.,
in the text file and by specification
when executing PFONT of which
font name corresponds to which font
number in the document. Other
switches are available for text center-
ing, underlining, justification, tab-
bing, etc. There is also provision for
printing a character corresponding to
a particular ASCII value in the font.
This allows the printing of special
characters, symbols, etc. This will be
discussed more fully in the section
dealing with CFONT. Thus, PFONT
supplies a versatile print formatting
capability tailored to the characteris-
tics of the Epson printer. There are
few if any features one could ask for
that are not available under PFONT.

(continued on next page)

Introduction
Fancy Font is a package of programs
that takes advantage of the excellent
resolution available with the Epson
MX-80 and MX-100 dot matrix print-
ers. I was provided with two single
density eight inch diskettes, one con-
taining the program PFONT.COM
and a number of pre-defined fonts to
be used for printing documents, the
other containing EFONT.COM,
CFONT.COM, HERSHEY.CHR (see
below) as well as a few more fonts.
The software requires a minimum
48K CP/M 2.2 system, and is written
in BDS C (note, however, that no
source files are provided on the dis-
tribution disks.) This combination of
software and hardware is capable of
producing hard copy output of a
quality and variety that surpasses all
other printers in the price range con-
sistent with a personal computer sys-
tem. See Figure 1 for a sample of
some of the type styles and sizes sup-
plied.

The Epson Printer
The Epson MX-80 and MX-100 print-
ers normally use a matrix of 9x9 dots
to define a character. This is very
satisfactory for draft printing, pro-
gram listings, etc. but leaves a lot to
be desired for letters, contracts, and
other "correspondence" needs. The
addition of a Graftrax or Graftrax-
Plus ROM (read-only memory) up-
grades the operation of the printer
substantially, including among the
many enhancements a graphics
mode in which a resolution of 216
dots/inch vertically x 240 dots/inch
horizontally is possible. This resolu-
tion is considerably higher than
some of the other competing printers
on the market; the Okidata Microline
82A, for example, allows a dot resolu-
tion of 66 x 60 in high resolution
graphics mode. I have long thought
that the graphics mode of the Epson
could lend itself to the generation of
custom typefaces of high resolution,
but the labor required to do the job
properly discouraged my efforts. The

Fancy Font package has indeed ad-
mirably accomplished this task. I will
proceed to discuss the three basic
programs supplied; each in turn can
be considered to be independent in
its use.

PFONT
PFONT.COM is the workhorse pro-
gram in the Fancy Font package. It is
basically a text formatter that has
provision for the use of up to ten font
definition files (FILENAME. FON
files) in a document. These fonts may
be chosen from the pre-defined sets
supplied on the second Fancy Font
distribution disk or those created by
the user. More on the latter when we
get to a discussion of the EFONT and
CFONT programs.

Parameters may be specified either
on the command line or inter-
actively; thus:

A>PFONT TEXT.FIL +FO B:ROMN12 + SP 1

is equivalent to:

A>PFONT
»TEXT.FIL + FO B:ROMN12 + SP 1

These commands each will print the
file TEXT.FIL, using the font file
R0MN12.F0N on the B: drive, which
is a 12 point high Roman type style.
(A point is 1/72", and "normal" type
is usually 10 to 12 points, unrelated to
the familiar 10 and 12 pitch type-
writer print size.) The +SP 1 switch
will force a line spacing of one inch
between lines.

There are close to thirty parameters
such as SP that can be used to format
output when using PFONT, includ-
ing functions to control the font file
names, margin size, formfeed han-
dling, subset of pages to print, pause
between pages, etc. Fortunately most
of these have default settings which
can be used for "normal" documents
until the user has familiarized him-
self with the intricacies of the pro-
gram. The program achieves a satis-

Lifelines/The Software Magazine, Volume III, Number 9

EFONT
EFONT.COM allows the editing of a
font. It is supplied in two forms on
the distribution disk, both in a nor-
mal file and in a format that uses
overlays (parts of the program reside
in different disk files called up as
needed.) EFONTO.COM, the latter
version, is required for smaller TPA
sizes and sacrifices some speed for
compactness. The purpose of the
edit program is to convert a font into
a set of characters suitable for modifi-
cation using a standard text editor.
The normal definition of a character
as a series of dots is converted to a
series of asterisk characters in the text
file. In addition to the asterisk repre-
sentation, left and right margin spac-
ing for the character (blank dot posi-
tions) and the relative height of the
top dot in the character are repre-
sented. This latter information is
used so that character baselines line
up properly when using several fonts
in a single document.

The commands present in EFONT
allow the loading of a font for editing
or inspection, printing one or more
characters to the Epson in the ex-
panded asterisk representation,
modifying margins of one or more
characters in the font, replacing one
or a group of characters with their
edit file specifications, etc. The use of
this program required a little trial
and error to understand the effect of
the various commands; it is not as
straightforward to use as PFONT. I
was also hindered by the preliminary
version of the manual that I was deal-
ing with, but the finalized copy that I
have just received goes into each
command in sufficient detail to make
me comfortable. I have my doubts
that a non-technical person would be
able to use EFONT (or CFONT for
that matter) without considerable
grief; this is not true for PFONT,
however, and considering the large
variety of fonts supplied with the
software, I do not see this as a serious
handicap.

CFONT
CFONT.COM is surely one of the
most useful and enjoyable aspects of
Fancy Font. This program is based on
the National Bureau of Standards
publication No. 424, authored by
Alan V. Hershey. The Hershey data-
base consists of over 1500 character

10

definitions of all sorts, including
"normal" characters, italics, greek
letters, mathematical symbols, Old
English, game symbols, etc. It is from
this database that the bulk of the
fonts on the distribution disk were
drawn. CFONT allows the user to de-
fine new fonts using the Hershey
database as a pool on which to draw.
The versatility of the program allows
the mapping of any Hershey charac-
ter to any ASCII value; thus one
could easily define a set of greek
symbols with "A" corresponding to
alpha, "B" to beta, etc. One could
even define an "A" in a text file to be
printed as a "Z". I suppose one might
define a font with random corre-
spondence between the actual char-
acters and those printed out with
Fancy Font to be used as a simple
cryptographic tool, providing the re-
ceiver had the same font definition
available.

There are several commands callable
in CFONT, to do the mappings from
the Hershey set to the font, change
scaling factors (character size), print
a set of characters to the printer for
inspection (this command did not
work properly in my version), save
the mappings as a FONTNAME.FON
file, etc. Presumably one would de-
fine a suitable character set using
CFONT, print the characters and
after inspection, use EFONT to make
small changes so as to improve the
appearance of any characters that
looked a little odd, and then save the
font for future use. While not inher-
ently difficult, this is a tedious pro-
cess. I suspect that most users will be
satisfied to use the supplied fonts,
adding perhaps a character or two
now and then as the need arises. This
is in fact how I have used Fancy Font
in the two months or so that I have
had it. It is an important plus, how-
ever, to have the tools available to de-
fine complete sets of characters from
scratch using either the Hershey Set
or a text editor. The latter capability
could allow the creation of custom
symbols for letterhead, for example.

Kinks
All is not roses, unfortunately. The
biggest drawback to Fancy Font is the
speed of printing. The normal mode
instructs the Epson printer to make
nine passes for each line of text for a
typical 12 point font. Since we are

using graphics mode, these passes
are made unidirectionally. The re-
sulting print speed is only about six
lines/minute! Needless to say, one
needs a lot of patience. The RD -
(rough draft) switch is available to
optionally specify fewer printhead
passes for trial documents and
makes life a little more bearable.
There is also an option to use the
hardwired Epson fonts, but many of
the PFONT features are of necessity
not available under this mode (justi-
fication and centering for example)
because of the hardware restrictions
when not in dot-graphics mode.
There is also a mode to preview the
output on the console, though this is
obviously of limited utility for the
same reasons. Even the use of a hard-
ware spooler such as the Queue-IV
with a 128K buffer is only a partial so-
lution since a line of text is translated
into many hundreds of bytes of data
to be output to the printer when in
high resolution graphics mode.
These are the tradeoffs one must en-
dure in order to get print quality sim-
ilar to a Sanders printer at a fraction
of the cost. I think this is a reasonable
price to pay for the enjoyment of see-
ing such pretty type, though I cannot
see running assembly language list-
ings, for example, through the Fancy
Font process.

Summary
I presume that it is pretty obvious
from this review that I am thoroughly
pleased with the Fancy Font package
of programs. Though I cannot in all
honesty state that I am using it for all
of my daily correspondence needs, it
is a masterful job of programming
that fully captures the capabilities of
the Epson hardware in a most user-
friendly manner and it represents
microcomputer applications pro-
gramming at its best. The current
price of Fancy Font is $180 and it is
available in 8" single density CP/M
standard format as well as Apple,
Xerox, and Osborne formats. Contact
the vendor for information on avail-
ablility on other formats. Fancy Font
is available from Softcraft, 8726 S.
Sepulveda Blvd., Los Angeles, Ca.
90045, 213-641-3822.

n

Lifelines/TheSoftware Magazine, February 1983

Sample Fonts

This is Roman, 12 point, 18 point, 8 point

Italics are also possible with the included fonts

Roman bold is another font useful for everyday documents

This is a sample of a Sans Serif style in 11 point

Jly favorite demonstration is to styom people tlpe

©lb English f nnt

NO PROBLEM. WE'VE BEEhTX
USING BACKREST. WE'LL)

JUST RESTORE IT.
y BAC K R EST INTELL IGENTLvX
(BACKS UP ANY HARD DISK TO
\ FLOPPY DISKS AND ALLOWS

PROF. EASY ->
WE LOST THE
MASTER Fl LEI

WHAT HAPPENED
TO IT? ! ! !

BUT WHAT IF A
FILE IS TOO BIG
FOR A FLOPPY/
7 DISK?

(BACKREST WILL \
i SPLIT IT BETWEEN 4,
CODED FLOPPY DISKS.

DONE, EVEN STATISTICS
ON HARD DISK USAGE

7 AND BAD FILES! f—Z

Toll free order line: (800) 431-1953 ext 183
In NY (800) 942-1935 ext 183

Complete 8 inch CP/M format disk
and manual retails for $99.95. N.Y.
residents please add sales tax.

17 West 17th Street
New York, N.Y. 10011
(212) 243-1444

Dealer inquiries invited.
CP/M is TM of Digital Research

Lifelines/The Software Magazine, Volume III, Number 9 11

Feature

Crosstalk
Davis A. Foulger

vides ample information about system status. The display
is cryptic, however, and does not seem to get any easier to
read with time. The meaning of each of these settings is
summarized briefly in Table 1, where the 23 commands of
Table 1 are displayed along with the sixteen other com-
mands that are supported by the system. (Incidentally,
CROSSTALK users can utilize Table 1 as a 'quick refer-
ence', not provided in the documentation.)

Cryptic informativeness seems to be a consistent feature
of CROSSTALK'S user interface. All the information
needed to make CROSSTALK user-friendly has been
implemented on the system, yet the package is not really
all that friendly. To run CROSSTALK you must read and
understand the CROSSTALK manual, especially if you
use CROSSTALK with a Hayes Smartmodem.

The problem is presenting information effectively. At
some points CROSSTALK offers the user an overload of
poorly organized information — the system parameters
listed at the beginning of the program are a good example.
At other times, there seems to be no information at all.
CROSSTALK is not a menu-driven program, and while
there are prompts, they are not adequate.

Getting Help On Getting Help
At the beginning of the program the user is advised to
'enter commands — or "he" for help'.

Ideally, the HElp command should lead to a menu of
options, one being an explanation of how to start
microcommunicating with CROSSTALK. If you don't
know how to use HElp, all you see after entering the HE
command is a rather busy table of the commands available
for use in CROSSTALK.

The commands are only minimally organized in the table.
No hint is given about what the commands are, how to
use them, or how to use the HElp command to find out
what they are. Plainly, this first HElp screen could be
written more helpfully.

The HElp command would most benefit from a menu-
driven approach that guides the user through the various
HElp options. Indeed, a prompt and menu approach
should probably be applied to CROSSTALK rather
liberally. This is particularly easy to implement on the
IBM Personal Computer, where line 25 of the display has
been given over almost entirely for use as a prompt and
menu area.

A line twenty-five display of menus and prompts would
be particularly nice given the program's use of the IBM
PC's function keys (Fl to F10; see Table 1). The assignment
of four of those keys — Fl to F4 — as user programmable
keys is a particularly nice feature of CROSSTALK.

There is a lot to like about CROSSTALK, a communica-
tions program developed by MicroStuf, Inc. for micro-
computers running under CP/M-80, CP/M-86 and SB-86.
The documentation is excellent. The procedures for back-
ing up and initializing the program are extremely easy.
The program runs smoothly — more smoothly, in fact,
than any other microcommunications program I have
looked at on the IBM PC. Indeed, the program meets just
about all of the basic criteria for a usable microcommuni-
cations program (as outlined in my article in the July Life-
lines/The Software Magazine).

However, it is a rare package that couldn't use some im-
provement. I can recommend the program with great con-
fidence to microcommunicators who want to use a single
package and who don't want to have to think very much
about how it works.

A Little Background
CROSSTALK has come to the IBM Personal Computer
from the CP/M-80 world. MicroStuf describes it as a
Smart Terminal And File Transfer Program, a description
which sums up the program about as well as any availa-
ble.

Although the program offers the user about 39 com-
mands, it provides little in the way of '"ideal" (see my arti-
cle in the August Lifelines/The Software Magazine) features.
Rather, it turns the microcomputer into a '"smart" termi-
nal — smart largely because it makes use of the micro-
computer's disk drives to store and retrieve information.

CROSSTALK takes advantage of the special features of
the Hayes Smartmodem. When I received CROSSTALK
for review, this was an unusual feature of the package that
should have made the package particularly appealing to
IBM Personal Computer owners, as the Hayes Smart-
modem has proven a popular peripheral for IBM PC's.

A Session With CROSSTALK
CROSSTALK is not difficult to use. Easily copied onto the
diskette of one's choice, the program can be kept on a
dedicated diskette with transcripts of conversations, or
kept as one of several utility programs in a DOS toolkit.
The program does not require a run time package. As a re-
sult, there is no need to call up BASIC or any other lan-
guage before using CROSSTALK.

The XTALK command invokes the program; this feature
can be altered by changing the name of the program file.
When the program is fully loaded, a screen is displayed
that shows CROSSTALK'S current settings and lets the
user start up the system. The default version of this screen
is shown in Figure One.

For the user who knows how to read it, this screen pro-

Lifelines/TheSoftware Magazine, February 198312

Dialing Out
Once you know the command structure (or have figured
out how to use HElp) it is easy to call another computer
using CROSSTALK. If you are using a Hayes Smart-
modem, the telephone number can be dialed directly
from the keyboard of your computer. If you aren't, a single
carriage return will take you into terminal mode. The user
has fairly complete control of the configuration of the ter-
minal and transmission characteristics, as can be seen in
Table 1.

Commonly used configurations and the telephone num-
bers they are used with can be saved for reuse in com-
mand files. When Smartmodem is used, these command
files allow you to dial the phone by simply specifying the
command file involved when CROSSTALK is first started.
To do this you might write XTALK SOURCE (assuming a
command file called SOURCE) to start the program. The
command file would be called and the number dialed
automatically.

The user is also given two sets of commands for exchang-
ing files with other computers. One set, the CROSSTALK
Protocol commands, allows the reliable exchange of files
between computers when both are using CROSSTALK.
Protocol transfers move files between computers one
block at a time, with sophisticated error checking per-
formed along the way. Non-protocol file transfers will
work when a connection is established with any com-
puter.

Once the connection is established, movement between
communications (terminal) mode and CROSSTALK'S
command mode is quick and easy. The Escape key moves
the user into command mode. The return key takes the
user back into communications. Some of CROSSTALK'S
commands allow a remote user to control the operation of
CROSSTALK. The program is not an Electronic Bulletin
Board program and will not run in an entirely stand-alone
mode, but files can be saved and retrieved from a remote
terminal without the intervention of the local operator.

CROSSTALK and the
Hayes Smartmodem
CROSSTALK'S ability to take advantage of the Hayes
Smartmodem should be one of its strongest features. The
Hayes product does not require special software and the
user should be able to control it from any microcommuni-
cations program. Operating the Hayes does require the
user to learn a small program language, however. Thus,
controlling the Smartmodem from software opens the
possibility of building a much more user friendly
microcommunications interface.

CROSSTALK'S advantage should be made even greater by
the fact that, despite the relative simplicity of adapting
software to Smartmodem, very few microcommunica-
tions software packages do so. Indeed, some software de-
velopers I have spoken with are openly hostile to the idea
of building Hayes' interfaces into their software.

This advantage has been nullified, however, by two fea-
tures of CROSSTALK'S support of Smartmodem. First,
CROSSTALK requires that the Smartmodem be config-

Lifelines/The Software Magazine, Volume III, Number 9

ured with non-standard switch settings that require the
user to take the cover off Smartmodem and physically re-
set the Hayes switches. Second, CROSSTALK then takes
complete control of Smartmodem, refusing to let the user
control Smartmodem in any way.
The non-standard switch settings present CROSSTALK
with a kind of double problem. For inexperienced users
the resetting of Smartmodem's switches may represent a
formidable task. Although resetting these switches is not
difficult, it is not well-documented either.
CROSSTALK leaves its explanation of the resetting opera-
tion to Appendix F, where the user is faced with nothing
more than a numbered list of the appropriate switch set-
tings. Reference to the Smartmodem manual helps (pages
2-4 to 2-7), but a person unfamiliar with computer equip-
ment (and deathly afraid of damaging a several hundred
dollar investment) may require several hours to figure out
how to do it.

The second problem with the non-standard switch set-
tings will be experienced by users (like myself) who em-
ploy several different microcommunications programs;
many programs will be unable to utilize Smartmodem in
the CROSSTALK switch configuration. In testing
CROSSTALK I found it necessary to change switch set-
tings so often, at times, that I took to simply leaving the
front cover of the Smartmodem off.
Users who never use any program but CROSSTALK will
not find this to be much of a problem. For me, however,
CROSSTALK'S lack of word wrap and other "ideal" micro-
communications software options make it a poor choice
for some frequently used microcommunications applica-
tions.
MicroStuf's decision to tie up Smartmodem with non-
standard switch settings was neither capricious nor de-
signed to frustrate users. The choice is made because
CROSSTALK does a very good job of controlling commu-
nication itself. It does not, for instance, need the Smart-
modem to formally recognize incoming calls. It is quite
capable of reading the telephone lines itself if put into
answer mode. There are some very good reasons to give a
microcommunications program the kind of control that
MicroStuf has built into CROSSTALK, especially when
the user's microcommunications system works with one
of the less expensive direct connect modems. That control
is wasted on Smartmodem, however, which loses capabil-
ities under CROSSTALK'S control.
Both of the objections I have raised to CROSSTALK'S use
of the Smartmodem can be met in software, however.
First, it would be possible for CROSSTALK to make the
switch settings electronically all by itself, once it knows it
is dealing with a Hayes Smartmodem. This would greatly
benefit the user who makes use of other microcommuni-
cations software packages, as it would allow Smart-
modem to be reset to the generally preferable factory set-
tings by simply turning the modem off. User access to the
Smartmodem can also be affected from within software.

Documentation
The documentation lacks a quick reference card, a loss
that is made particularly acute by the software's short-
comings in the area of menus and prompts. It also lacks

(continued on next page)

the kind of clear conceptual organization that would be
gained in the exercise of creating a quick reference card.

The documentation's biggest problems are in its attention
to little things. The process of resetting the switches on
the Smartmodem, for instance, should be clearly ex-
plained in the manual. Indeed, much more should be
made of the need to reset those switches.

TABLE 1
CROSSTALK’S Commands

NON-Protocol file transfer commands
(work with any comm program)
CApture (F5) save received data to a buffer or disk file
WRite save receive buffer to disk file
MEm draws a graph of the capture buffer
REad Send a file to the modem
SCreen don’t send line feeds when reading a file from

disk
FLow sets CROSSTALK to transmit by line or

character.
WAit sets waiting times in line or character flow

modes

The manual suffers from inattention to some big things as
well, particularly from MicroStuf's failure to clearly orga-
nize the commands and explain their relationship to one
another. On the whole, CROSSTALK'S documentation
isn't bad. But it would benefit from some reorganization
and lengthening.

Overall Evaluation
CROSSTALK is a good microcommunications software
package that many will find highly satisfactory. As al-
ready noted, there is a lot to like about CROSSTALK. The
package would, however, benefit from some improve-
ment, particularly in the area of making the program
friendlier through the use of prompts and menus. The
documentation could be better, too, and would be much
improved by the inclusion of a quick reference card.
Finally, the package's interface with the Hayes Smart-
modem could be handled better.

Protocol File Transfer Commands *

XMit Initiate protocol transfer of files
RCve Expect to receive a protocol file transfer
RQuest request file from remote system
BLock sets size of data blocks (in 128K increments)
NO no more files are coming

Command File Commands

LOad loads and executes command file
NAme a convenience feature for identifying

command files
SAve save a command file
List (F8) list current configuration
NUmber sets number to be dialed

Convenience Commands

Dlr displays disk directory
HEIp gets help
Time (F9) Displays time and date on screen
TYpe (F7) Displays contents of receive buffer

Transmission Control Commands

SPeed set transmission speed
STop set number of stop bits
DUplex sets duplex to full or half
MOde sets modem to answer or originate
DAta Sets the number of data bits used
PArity odd, even, none

Terminal Control Commands

Attention sets local command attention character
COmmand sets remote command attention character
Width sets video display width at 40 or 80
PRinter (F6) turn printer on or off
BYe hangs up and permits you to make another

call
XDos exits to DOS without hanging up
QUit hangs up and exits to DOS

My complaints here are really aimed more at the pro-
grammers at MicroStuf than at readers. Readers should,
of course, know about the program's shortcomings before
putting down hard currency for it, but the potential for
improvements to the program seem more important,
especially now, while the market for microcommunica-
tions is still young and the number of truly inexperienced
users is still limited. I don't expect to make much use of
CROSSTALK right now, but I like the underlying package
enough to think that it will be much improved in future
releases. I look forward to reviewing, and using, those re-
leases.

Figure 1 — CROSSTALK’S Default Settings

Current Parameters:

NAme
NUmber
Time : 8/20/82 01:06:55
MOde Originate ATten ESC
DUplex Full CApture Off
SPeed 300 PRinter Off
PArity None Filter On
Data 8 DEbug Off
STop 1 LFauto Off
WAit 01h SCreen Off
BLock 01h TAbex Off
FLow Char UConly Off
Width 1 Command tc
enter command — or “he” for help

Lifelines/TheSoftware Magazine, February 198314

TABLE 3
Qualitative Factors

Documentation
Rating

4
organization for learning 3
organization for reference 2
readability 5
includes all needed information 4

Ease of Use 4
initial start up 2
operator use 5
setting terminal parameters 6

Microcommunications Features
terminal Control 6
transmission control 7
operation under program control 1
storing terminal parameters 7
automatic log-on features 5

Support
for initial start up 4
for system improvement 7

"Ratings in this table wil be in a 1-7 scale where:
1 = clearly unacceptable for normal use
4 = good enough to serve for most situations
7 = excellent, powerful, or very easy

depending on the category

TABLE 1
CROSSTALK’S Commands (continued)

Character Control Commands

DEbug Identifies control characters
Filter sets CROSSTALK to discard received control

characters
TAbex Transmit tab characters as spaces to the next

tab
UConly Converts lower case to upper case
LFauto add line feed after received carriage returns

Additional Uses of Function Keys

F1...F4 User definable messages
F10 Sends a Break signal to the remote computer

TABLE 2
Facts & Figures

Package:
CROSSTALK 1.02

Price:
$195

Systems Available For:
IBM Personal Computer, CP/M

Machine Requirements:
64K, one disk drive, and a modem

Protocols Supported:
Asynchronous up to 9699 Baud; Hayes
Smartmodem

Version 2 For Z-80, CP/IVI (1.4 & 2.x) ,
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH— 79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

User Interface:
Serial

File Transfers:
Both Transmission of Saved files and saving of
received files. Two transfer modes are available.
One will work when communications is established
with any computer. The second, which provides
special error checking and transmission control
mechanisms, only works when CROSSTALK is
used on both ends of the line.

FEATURES OURS OTHERS
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG. .
Screen editor with user -def inable controls. YES
Macro-assembler with local labels. YES ■
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I I / I I+ version also available. YES
Affordable! $99.95
Low cost enhancement options,
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM9511 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only) YES

Special Features:
None

User Skill Level Required:
Requires a reading of the user manual and, if the
Hayes Smartmodem is used, a reading of its
manual. Relatively easy to use, once that reading is
done and the modem is properly configured. This
may prove difficult going for the novice user,
however.

FORTH-79 V.2 $99 95
ENHANCEMENT PACKAGE FOR V 2.

Floating point $ 49.95
COMBINATION PACKAGE (Base & Floatingpoint) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealer inquiries weIcome)System Upgrade Policy:

Users are notified of upgrades, when available. MicroMotion
12077 Wilshire Blvd. # 506
L.A., CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.Lifelines/The Software Magazine, Volume III, Number 9

15

Feature

Fullscreen Program Editors
for CP/M

Ward Christensen & Tom Cochran
WRAP-UP

by Ward Christensen

Here is a look back after nearly a year
of testing various full screen editors. I
often am asked: "which one did you
like best?" There was no single one. I
find I use the editors I have in approx-
imately the following proportions:

changed all of them to have nearly
the same keyboard layout — at least
for the major cursor movement,
scrolling, and line editing keys. They
differ only in the area of less fre-
quently used functions: top of file,
bottom of file, etc.

PMATE: The characteristics that
earned it top slot, are: (1) good full
screen processing, making use of
hardware line insert-delete, erase to
end of line, scrolling, etc; (2) the abil-
ity to do some text work, i.e. it has
word-wrap and limited printing; (3)
superb customizability so that every
couple of months I add or change
some features; (4) a powerful com-
mand macro language. Mike Olfe's
column in Lifelines gives many exam-
ples of the abilities of PMATE mac-
ros. My own most recent macro adds
columns of numbers in a text file —
typical of the very generalized appli-
cations macros may be put to.
MINCE: A good general-purpose
editor. I wouldn't want to be without
it because of its multi-file and split-
screen options.

WORDMASTER: It is still the fastest
when it comes to making small
changes, or when making multiple
identical changes through a long file.
Its lack of an "undo" key and lack of

block tag-and-move (or tag-and-de-
lete) limit my productivity with it as a
general editor.

WORDSTAR: I use this as a fancy
print program. I use it to print
PMATE text files since PMATE's and
WordStar's word wrapped lines are
compatible.

Revisions
In the last several weeks, I have re-
ceived revisions of VEDIT, MR EDit,
and PMATE. They all show improve-
ments, although it appears that
PMATE was the only one specifically
enhanced in response to the com-
ments I made in my Lifelines reviews
— and I liked it to start with! (A re-
view of the new PMATE follows this
article.)
A quick installation of the new
VEDIT showed the lack of scrolling
interrupting had not been fixed, so I
didn't look further. Similarly, the Mr
EDit cover letter indicated this re-
lease had "minor improvements"
over the previous release. Thus I was
able to save my time by not even look-
ing at it, what with bandages not
being sufficient when heart surgery
was called for.

Program editing:

PMATE 80%
MINCE 15%
WordMaster 5%

Text editing:

PMATE 83%
WordStar 10%
MINCE 5%
WordMaster 2%

The editors have several things in
common: All do preemptive scroll-
ing, i.e. when you press a key, what-
ever scrolling was in progress is
aborted if the key pressed would dic-
tate that. Thus issuing four "scroll
up" keys in rapid succession, will
quickly show the final screen and
skip the intermediate ones. Some of
the other editors I reviewed didn't
have this basic usability feature.
With the exception of WordMaster,
all are very configurable. I have

PMATE Revisited
New Release, nice features

by Ward Christensen
and Tom Cochran

PMATE for CP/M-80 by Michael
Aronson of Aox Incorporated, and
sold by Lifeboat, has turned out to be
my favorite editor. I reviewed version
3.02 in the May '82 issue of Lifelines.
The newly released version 3.21 di-
rectly addresses many of the com-
ments I made in that review.

The major enhancement is a full-fea-
tured repeat key. Like WordMaster,
pressing the designated repeat key
puts 4 in a counter. Subsequently
pressing it multiplies the counter by
4. Thus repeat-repeat-cursor down
will move the cursor down 16 lines.

Like the more powerful MINCE re-
peat key, PMATE will also accept de-
cimal digits after the initial repeat key
press. Thus repeat-1-8 will put 18 in
the repeat count, i.e. repeat-1-8* will
place a row of 18 asterisks in your file.
Unlike MINCE, PMATE does not
show you the repeat value. However,
since the top line of the screen does
have a field called "ARG', I could see
(hint hint) a future release placing
the repeat value in that field.

I originally complained that single-
line scrolling — the ability to move
the screen up or down one line with-
out moving the cursor — was not
supported. The alternative was to
either scroll a page, or set "wander =
0" so the cursor can't wander off of
the center line of your screen, thus

indirectly scrolling a line at a time
when you moved up or down. Re-
lease 3.21 added a line scrolling fea-
ture, so now if you set wander to
something larger than zero, the cur-
sor moves within that space without
scrolling. A major change in PMATE
is the means of adding your own in-
stant commands. These are func-
tions that you want to do with one or
two keystrokes, but that were not
pre-programmed into PMATE. For
example, standard PMATE imple-
ments the line delete key as "erase to
end of line if you are not at the begin-
ning of the line, otherwise delete the
entire line". If I had started with this, I
would probably be quite comfortable
with it. However, WordMaster got
me used to separate "erase to end of

Lifelines/TheSoftware Magazine, February 198316

line" and "delete entire line" keys, so
I am able to extend PMATE to sup-
port them.
The process used to consist of mak-
ing modifications via an assembly
source program. Now the number of
such "user instant commands" has
been cut back a bit, but you can place
them into PMATE via the editor in full
screen mode.
People who bought PMATE for the
IBM PC after reading my review,
were occasionally sorry they couldn't
customize theirs to the degree I could
the CP/M-80 version. Since this new
manual refers to all versions of
PMATE: CP/M-80, CP/M-86, MS
DOS, or PC DOS, this new method
of adding user instant commands
should simplify user enhancements
to these other versions.
Among the other improvements:
many useful macros are now in-
cluded with the disk, thanks to Mike
Olfe of Lifeboat; scroll left and right
features are supported; structured
programming (and even assembler
programming) is improved by addi-
tion of auto-indent, indent set, and
indent increment or decrement com-
mands; the full screen width line of

" (line 3 of your display) is no
longer redrawn when macros are ex-
ecuting, thus speeding up execution;

Tom Cochran (who also owned ver-
sion 3.02) and I reviewed version 3.21,
and came up with a few things we
would still like to see:

(1) Scrolling is nice, but it doesn't
continue after the cursor reaches the
top or bottom of the screen. Thus you
have to switch from "line scrolling"
keys to "cursor movement" keys if
you wish to scroll off the page. We
don't think the cursor being at the
top line (actually, the top limit of
"wander") means we might not want
to scroll up some more. This is a
minor problem, and can probably be
easily corrected;

(2) While not drawing the line of
dashes improves speed during the
execution of macros that display the
screen, the entire status line is still
updated, even though it doesn't
change.

(3) If as required by some terminals,
you have specified that data may not
be placed in the last column of the
last row of your screen, PMATE
keeps addressing the cursor down

there (actually on every keystroke). If
your terminal uses a large block cur-
sor, this is somewhat distracting.
Similarly, the cursor flashes to up-
date the column number on every
keystroke. It would be nicer if it never
went to the lower right corner, and if
the column was only updated with a
zzl/4-second delay" so if you were typ-
ing fast, it wouldn't keep jumping
around.

(4) Under the new revision, the num-
ber of user instant commands ap-
pears to be limited to ten. A "real
hacker" would like more than that.

(5) It would occasionally be nice to be
able to horizontally scroll a file wider
than 250 — (a limited, special need).

(6) A nice "frill" would be to have an
indicator to show which buffers are
in use, i.e., a line: T0123456789 being
shown in the last 11 bytes of the line
of dashes, or in the open space on
that status line.

None of these significantly detract
from the usability of PMATE. All in
all, PMATE was very good, and the
new revision makes it even better. Q

(Editorial continued from page 2)
Finally Allan Miller has produced an
interesting book on CP/M called Mas-
tering CP/M. It attempts to address
the issue of writing a BIOS, discusses
building a MACRO library, using
BDOS for nondisk operations, read-
ing/writing files with BDOS, and
other less interesting topics covered
countless times before. Ask for it at
your local dealer or bookstore and if
your examination warrants it, add it
to your CP/M library. This is too tech-
nical a treatment to be of much inter-
est to the casual reader/user. Un-
questionably the best CP/M book to
date is Inside CP/M - A Guide for Users
and Programmers with CP/M-86 and
MP/M2. This book, authored by
David E. Cortesi, is a must for all seri-
ous CP/M users. If you can only af-
ford one book on CP/M for your li-
brary this is the one. Beginners
should read CP/M Primer by Stephen
M. Murtha and Mitchell Waite.
These books are the best of what's
available so look at Allan's book, read
Murtha and Waite's treatment and
get Cortesi's tome. You can forget the
rest. . . The Best Is Yet To Be. . . U

Lifelines/The Software Magazine, Volume III, Number 9 17

Feature
Cogen — An Application
Development Utility

Joseph Rothstein
stage, but may be of some interest to the novice user trying
to determine what to expect of the package.

The Demo-Installation section consists of a single page,
titled "Installation and Execution under CP/M". It de-
scribes the minimum configuration requirements, a brief
admonition to copy the contents of the distribution disk to
a working copy, and a few sentences on execution. While
this may be entirely adequate for the experienced user of
CP/M, the novice user generally needs a more complete
and strongly worded backup procedure. No terminal- de-
pendent features are described, and apparently none are
part of this version of COGEN, though there are plans to
include such features in subsequent releases.

It is in the User's Manual that COGEN truly shines. The
55-page combination tutorial/reference is a joy to read and
a pleasure to learn from. Tutorial examples appear on left-
hand pages, corresponding to reference manual entries
on right-hand pages. Sample entries by the user are indi-
cated in the tutorial by boldface characters enclosed in
boxes.

Once beyond the tutorial stage, though, the experienced
user may find the organization of the reference guide to be
less than optimal. While all the needed information ap-
pears to be present, the only way to locate a particular sub-
ject is through the table of contents. This is probably ade-
quate for most situations, but my strong preference is for
an index or quick reference guide, which I generally use
far more often than a manual, in those software packages
that include such documentation aids. On an optimistic
note, I should mention that after I'd had COGEN for a
month, I received an updated copy of the manual, and
perhaps these sorts of improvements may be made to sub-
sequent revisions.
The final section of the documentation binder contains
the complete COGEN-generated code for three programs
involving file maintenance, inquiry and reporting. These
correspond to the programs used as examples in the tutor-
ial text. While the program code may be of some use in
learning about COBOL itself, I have not found it of much
use either in learning the system or as a reference docu-
ment.

Ease of Use
Once a backup copy is made, bringing the system up
could hardly be more straightforward. No custom config-
uration is required, as the program is designed to run on
any CP/M system, without hardware-dependent options.
COGEN does not currently make use of such terminal
enhancements as reverse video or blinking, but such fea-
tures do not seem to be important in the context of
COGEN. To execute COGEN the user need only enter
"RUNCOBOL COGEN" in response to the CP/M system
prompt. The program will then prompt the user for a de-

COGEN (from Bytek, 1714 Solano Avenue, Berkeley, CA
94707) is an applications development utility which pro-
duces RM/COBOL program code for standard business
applications: file maintenance, inquiries and reports.
TTirough a series of steps based on menu selections and
specifications, entered by the user in response to
prompts, the utility produces copy files which can be in-
corporated into other COBOL source code, or combined
by CO GEN into complete applications programs.

COBOL is ideally suited to such a utility for two reasons:
first, while not considered a "structured language" by
many purists, COBOL nonetheless has a clearly defined
program hierarchy and organization, employing certain
segments of code which often vary little from application
to application. Second, by intention of its designers, it is a
business-oriented language. Consequently, a greater per-
centage of COBOL programs are of the variety at which
COGEN excels than would be the case with a language
such as BASIC or Pascal.

For this evaluation I used a homebrew S-100 system run-
ning CP/M, and though COBOL is not a language I use
frequently, I was able to create useful, complete programs
with a speed and facility I found impressive.

Evaluation
Documentation. The documention is bound in a three-
ring notebook divided by index tabs into four sections.
The clarity of the tutorial text and user manual, which
forms the bulk of the documentation, could serve as a
model for all documentation authors, for at no time did I
find myself confused or misled by ambiguous or muddled
writing. However, several shortcomings of other sorts
should be noted. Despite the quality of the tutorial/man-
ual, the lack of an index, quick reference guide, or glos-
sary of important terms tempers the praise I would other-
wise lavish upon COGEN's documentation.

The four sections into which the binder is divided are:

1) Literature - Comments
2) Demo - Installation
3) User's Manual
4) Sample Programs (Maintenance, Inquiry, Report)

The Literature portion includes little of real importance.
Most of the section is devoted to copies of magazine ad-
vertisements, news releases, customer references, user
comments and such. Of somewhat greater interest are the
User Agreement, containing the usual disclaimers and
limits on liability, and a 13-page Technical Introduction
containing a brief overview of the system including fea-
tures, primary modules, and a sample program. Also in-
cluded in the Technical Introduction are sections on the
benefits of using COGEN and sample productivity
benchmarks. These seem of little value beyond the sale

Lifelines/TheSoftware Magazine, February 1983ls

In general, while COBOL is not recognized for imple-
menting facilities designed to make life easy on the end
user - and COGEN is no different - CO GEN itself de-
serves considerable credit for offering the COBOL
programmer a tremendous improvement in the ease with
which an application program may be developed.

Support
The level of support and technical advice BYTEK offers
COGEN users seems consistent with the professional
standards evident in most other aspects of the product.
BYTEK's telephone number is published (though not
prominently) in their documentation. The company
maintains a technical staff prepared to assist users of the
package, and they are most accommodating in offering
such assistance.
I spoke by phone with BYTEK's Dan Pines, author of the
sample programs found in the manual, and found him to
be most knowledgeable and helpful. I was particularly
impressed by his statement that registered COGEN own-
ers will continue to receive free updates to the package
into the foreseeable future. This is a refreshing change
from the usual practice among microcomputer software
distributors (where $50 update fees are not uncommon),
and goes a long way toward justifying a price which may,
at first, seem expensive. I would gladly pay a higher initial
purchase price in return for the sort of quality product,
level of support, and update policy which BYTEK seems
to provide COGEN users. As I mentioned earlier in this
review, BYTEK sent me an updated version of their user
manual shortly after I had received the original one; a disk
containing their latest revision of the software, Version
5.2, was included as well. Enhancements and revisions
appear to be made on a regular basis, and long-term prod-
uct support seems assured.

Conclusions
Stated briefly, any COBOL programming shop or profes-
sional COBOL programmer who does not have a system
like CO GEN should buy it without delay.
The hacker, software collector, or hobbyist will likely balk
at COGEN's $950 price tag - steep by comparison to most
microcomputer software. But to those for whom COBOL
programming is a bread-and-butter pursuit, the package
will quickly pay for itself in the coding time it saves. Pro-
grammer time is often the biggest single expense of a soft-
ware enterprise, and COGEN has the potential to make a
great contribution to increased productivity and cost-cut-
ting in that regard.

On the other hand, COGEN does not itself seem an com-
pelling reason to switch from another language to
COBOL. No program generator can, alone, overcome the
shortcomings of a programming language, and it's my
opinion that COBOL has many shortcomings. That's no
reflection on the quality or usefulness of COGEN, how-
ever - it is a professionally designed and implemented
product, which should find receptive users among the
COBOL community.

Moreover, I am pleased to see the emergence of program
generators such as COGEN. We seem to be entering a new
stage of software development, in which high-caliber

(continued on next page)

fault output drive, which may be the currently logged disk
or any system disk drive.
COGEN uses menus and data entry screens to lead the
user through the development of an application program.
Four modules appear on the master menu: Files, Screens,
Reports, and Programs. The Files module uses interactive
data entry to construct the file select, description, and
declaratives sections required of any COBOL program.
The Screens module enables the programmer to design
screens for use in COGEN programs or for incorporation
into independently coded procedures written in COBOL.
The Reports module enables the programmer to define
report form blanks on the screen in an interactive fashion.
Finally, the Programs module combines COGEN copy
files into complete programs for either file maintenance,
inquiries, or reports.

Code generated by COGEN may also be incorporated into
other programs written in any version of ANSI COBOL-74
which includes the 'COPY' statement, though code
created by COGEN to handle screen I/O may not
necessarily be compatible with COBOL's other than
RM/COBOL, since screen handling protocol is not part of
the ANSI specifications.

Each of COGEN's modules deserves high marks for ease
of use, with one caveat. Some knowledge of COBOL is
required if the user is to understand what specification is
required by the interactive dialogues. The user need not
already be an expert COBOL programmer, but one who is
new to COBOL should probably at least read an
introductory text on the language before attempting to use
COGEN. This is not a shortcoming of COGEN, which
does not claim to be designed for the completely
inexperienced user. Anyone with even a passing
familiarity with COBOL should find this product a
pleasure to use.

Only those field descriptors found in standard COBOL
are included, so data entry error trapping is somewhat
limited, though this is a result of COBOL itself rather than
the application generator. For the same reason, there is no
facility for creating online "Help Messages" to the user.
Data entry is as idiot-proof as it is in any COBOL program
- no more, no less. However, such features as screen
overlays and split-screens provide facilities for powerful
and flexible, if not necessarily error-free data entry.

The skilled COBOL programmer should be able to
incorporate data files generated under other languages or
programs into a COGEN-created program, provided that
the data files can be described according to COBOL's rules
for data file and record definition.

No file recovery utility is included with the package,
making program and data backup completely the
responsibility of the user.

File access, both in retrieving records and adding new
ones, is fast and efficient. Whether the programmer speci-
fies dynamic, random, or sequential access, COGEN pro-
grams can retrieve or insert one record of 1000 in just a few
seconds. Dynamic record access by record key appears to
be the fastest access method, but each access method acts
within acceptable time limits - though the I/O speed of
any particular system will depend on such factors as clock
speed and disk density.

Lifelines/The Software Magazine, Volume III, Number 9

tools are becoming available to the professional program-
mer, regardless of which language or software environ-
ment he or she prefers to work with. In addition to
COGEN for RM/COBOL, we have recently seen the intro-
duction of such tools for MBASIC, dBASE II, and others.
It's my hope and belief that this new generation of soft-
ware products will raise the design and implementation

of routine systems from the level of a black art to that of a
lucid and comfortable activity.

COGEN is a professional product in the best sense of the
word, and deserves serious consideration by any COBOL
programmer.

TABLE 1
Facts & Figures

Package or Version name:
COGEN, Version 5.2

Price:
$ 30 (Manual only)
$100 (Demo system - applicable toward pur-

chase price)
$950 (Complete package)

Systems Available For:
CP/M, OASIS, IMOS, RT-11, and IRX systems run-
ning RM/COBOL

Required supporting software:
CP/M Version 2.2 or later
A complete program development environment
would also require a text editor or word processor,
and the RM/COBOL modules

Memory requirements:
40K RAM

Diskette capacity required:
Two single-density disk drives minimum

Utility programs provided:
none

Record size & type limits:
Records may be fixed or variable length, to a maxi-
mum of 999 characters
File organization may be Index, Relative, or Se-
quential
Access mode may be Dynamic, Random, or Se-
quential

Portability:
Files created by COGEN may be incorporated into
programs written in any ANSI COBOL-74 which
uses the ‘COPY’ statement
Use of tun-time module for RM/COBOL requires
payment of license fee and royalty to Ryan-McFar-
land, authors of RM/COBOL - call (408) 662-2522
for information and royalty schedule

User skill level required:
experienced COBOL user or professional pro-
grammer

System upgrade policy:
All registered COGEN owners will automatically re-
ceive updates from BYTEK as they are released

TABLE 2
Qualitative Factors

Rating*
Documentation

organization for learning 6
organization for reference 5
readability 7
includes all needed information 6

Ease of Use
initial start up 6
conversion of external date 4
application implementation 6
operator use 4

Error recovery
from input error 4
restart from interruption 7
from data media damage 1

Support
for initial start up 6
for system improvement 7

‘Ratings in this table wil be in a 1-7 scale where:
1 = clearly unacceptable for normal use
4 = good enough to serve for most situations
7 = excellent, powerful, or very easy

depending on the category

TABLE 3 - APPLICATION DEVELOPMENT FACILITIES

FUNCTIONAL

PARTS

COMPLETENESS AND COMPLEXITY

OF FACILITIES

LITTLE

OR NONE

SOME COMPLETE

& COMPLEX

EASILY

COMPLEX

INDIV IDUAL

PROGRAM

DEVELOPMENT X

INPUT

TRANSACTIONS X

DATA

MANAGEMENT X

REPORTS &

QUERIES X

INTEGRATED

SYSTEMS X

H
Lifelines/TheSoftware Magazine, February 198320

Feature How To Be A Manipulator
(of Z80 data)

Kim West DeWindt
ister, the programmer does have a wide selection of
operands to use as the source of data. These include the
standard set of operands (mentioned previously) and the
option of imbedding data in the opcode - immediate data.

To summarize: the accumulator must contain one byte of
the data that is being used in the operation. The second
byte of data can be in one of the general purpose registers
(including A), in memory, or in the instruction stream. If
the data is located in memory, the address of that data can
be in the register pair HL or in one of the index registers.
The results of the operation are stored in A, the original
value of A is destroyed.

The arithmetic operations that can be performed are:
Add, Add with Carry, Subtract, and Subtract with Carry.
(In subtraction, the carry bit is used to indicate borrow-
ing). In the examples below, the standard set of operands
or immediate data may be used as the source (second) op-
erand.

ADDA,B ADDB
Add the contents of the B register to the accumulator.

ADD A,6 ADI 6
Add 6 to the A register. Note that Intel uses a differ-
ent mnemonic for the Add Immediate instruction.

ADCA,D ADCD
Add the contents of D and the value of the carry bit to
A.

ADC A,10 ACI10
Add to A the immediate data 10 and the carry bit.
Again, Intel forces the programmer to remember
another opcode.

SUB A, (HL) SUBM
Subtract the contents of the memory location,
whose address is in HL, from A.

SUB A,35 SBI 35
Subtract from A the value 35. (Yet another Intel mne-
monic)

SBC A, (IX + 0) SBB no equivalent
Subtract the value of the carry bit and the contents of
the memory location, whose address is in the IX reg-
ister (offset = 0), from the accumulator. Intel calls
this a Subtract with Borrow, and has no indexing
mode - the user is constrained to using one of the
eight bit registers or M.

As we continue on through the saga of the Z80 instruction
set, we move into the realm of manipulation: Arithmetic,
logic, all of the instructions that alter data. This is really
the first level of data manipulation. Final data, informa-
tion that people can use, has been altered from the com-
puter's binary coding into 'real' numbers. Z80 instructions
manipulate data, it is your program's duty to turn those
ones and zeros into ASCII - or some format meaningful to
the human eye. Though binary data does look good on a
string of Christmas tree lights.

As before, I do not go into elaborate details about those in-
structions that are identical to the 8080 instruction set.
This discussion centers on those instructions that are
unique to the Z80. Z80 mnemonics are used, and when
possible, the corresponding Intel mnemonics are shown
for cross reference.

This general introduction is followed by a discussion of
the Z80 arithmetic instructions, adding, subtracting, etc.
Next in line are the logical instructions. This section ends
with a comparison of the various rotate and shift instruc-
tions. If you have any questions, see me after class.

The mnemonics used throughout this tutorial are those
shown in the Zilog Assembly Language guide. For a more
detailed description of the addressing modes that are ref-
erenced in this discussion, see the earlier sections of this
tutorial.

There is one group of eight bit operands that are used in
the arithmetic and logical instructions. Rather than
re-iterate them in each section, I am going to define them
here and note which instructions use this set. The set of
operands includes the general purpose eight bit registers
(A,B,C,D,E,H, and L), the memory location pointed to be
the HL register pair (known as memory location M, to all
of you Intel groupies) and the memory location pointed to
by one of the index registers (IX or IY). This indexed ad-
dressing is unique to the Z80. A fixed eight bit offset may
be added to the contents of IX or IY at the time of execu-
tion. Throughout this section, I refer to this group of oper-
ands as the standard set. In addition, the terms 'accumu-
lator' and A register' are used interchangeably.

In the mnemonic examples, the Zilog mnemonic is on the
left, the Intel counterpart (if it exists) is on the right. A de-
scription of the opcode's function is directly under each
example.

SBC A, (IY + 16) SCI no equivalent
Subtract from A the data stored at the address in IY,
(add the offset of 16 to that address), and the value of
the carry bit. There are eight different Intel mne-
monics needed to match four Zilog mnemonics.

Sixteen bit arithmetic
Unlike Intel, Zilog uses similar mnemonics for the sixteen
bit arithmetic instructions. The opcodes are the same,
only the operands have been changed to direct the data
flow. During sixteen bit instructions, the register pair HL

(continued on next page)

Arithmetic instructions
The arithmetic instructions require that the accumulator
be the destination register. There is no way to overide this
fixed destination. These arithmetic operations are per-
formed in the accumulator, might as well save transit time
and leave the results where they are calculated. If the re-
sults of an arithmetic operation are needed elsewhere,
you have to perform the calculation. Then (in a future in-
struction) send the information to its final resting place.
(Also watch for next month's section on the Move instruc-
tions). Despite the limitations of a fixed destination reg-

Lifelines/The Software Magazine, Volume III, Number 9

corresponds to the accumulator, becoming the prede-
fined destination. The arithmetic function is still pro-
cessed in the accumulator, but partial and final results are
stored in HL. For sixteen bit operation, the source oper-
and must be one of the register pairs - BC, DE, HL, or SP.
Sixteen bit instructions look like this:

ADD HL,BC DAD B
Add the contents of BC to the contents of HL (and
another Intel mnemonic).

ADC HL, DE no match
Add the contents of DE and the value of the carry bit
to HL.

SBC HL,SP no match
Subtract the contents of the stack pointer (SP) and
the value of the carry bit, from the contents of HL.

Note that SUB (subtract without carry) is not used with
sixteen bit operands. Since the Z80's internal data bus and
the accumulator are only eight bits wide, all sixteen bit op-
erations must be done in two steps. In a sixteen bit
subtraction, the low bytes of the two operands are sub-
tracted, then the high bytes are subtracted. The carry bit
must be taken into consideration when subtracting the
high order bytes, in order to record the effect of a carry out
(borrow) from the low byte operation. The carry bit is
always used in sixteen bit subtractions, and this is re-
flected by the use of the SBC opcode.
Two special arithmetic instructions require only one oper-
and. These instructions are Increment, which automati-
cally adds one to the operand, and Decrement, which
automatically subtracts one from the operand. The oper-
and can be any one of the standard set of arithmetic oper-
ands:

INCB INRB
Increment (by one) the contents of register B

DEC (HL) DCRM
DEC (IX 4- 3) no match

Decrement the contents of the memory location
whose address is in HL. With the Z80, the memory
location can also be addressed by one of the index
registers modified by an offset (3).
The sixteen bit version of Increment/Decrement can
be used to alter any one of the register pairs, or one of
the index registers. The opcodes are the same, just
insert the appropriate register pair in the operand
field:

INCBC INXB
Increment the contents of the register BC.

DEC IX DCX no equivalent
Decrement the contents of the index register IX. (No
index registers in the 8080).

Accumulator Arithmetic
There are a few arithmetic instructions that can manipu-
late only the accumulator. One of them, Decimal Adjust
(DAA), is that little known opcode that mysteriously ap-
pears in most microprocessor instruction sets. DAA is
used, after the addition or subtraction of BCD digits, to
convert the contents of the accumulator into BCD digits.
The mnemonic looks like this:

DAA DAA
Convert the contents of the A register into packed
BCD.

BCD stands for Binary Coded Decimal, and it is a simple
representation of decimal numbers in binary code. One
nibble represents one decimal digit (from 0 to 9). Packed
BCD means that two decimal digits are stored in one byte
- one digit per nibble.For example, the decimal number 27
looks like this in BCD:

2 7
0010 0111

high nibble low nibble
All addition and subtraction instructions set or clear the
half carry bit (H). The state of H tells the processor (and
the programmer) whether or not there was a carry out
from bit 3 (the most significant bit of the lower nibble),
into bit 4 (the least significant bit of the high order nibble).
DAA tests the state of this flag when converting the con-
tents of the accumulator into valid BCD digits.
Complement (CPL) is another instruction that can only be
used on data that is in the accumulator. To complement a
binary word, the processor complements (toggles) the
value of each bit. All the ones become zeros, and all the
zeros are changed into ones. The result is known as the
one's complement of the original number. The mnemonic
for the complement instruction is:

CPL CMA
Complements the contents of the A register.

The third accumulator only instruction produces the neg-
ative value of the data of the A register. That is, it forms the
two's complement of the data in A. The two's complement
of a positive number is a binary representation of that
value as a negative number. Conversely, the two's comple-
ment of a negative number, is a positive number. This is a
signed format, where the value of bit seven (the most sig-
nificant bit) represents the sign of the number. If bit seven
is a 0 - the number is positive, if its value is 1 - the number
is negative. In operation, the Negate instruction subtracts
the value of A from zero. The mnemonic is:

NEG no match
Negate (form the two's complement of) the number
in A.

Logical Instructions
Actually, this first instruction falls into that gray region be-
tween math and logic. The Compare instruction functions
like the Subtract instruction, subtracting the second oper-
and (immediate data, or one of the standard arithmetic
operands) from the accumulator. However, it is a non-de-
structive subtraction. The flags are toggled to reflect the
results of the subtraction, but the data in the accumulator
is not changed. Only the altered state of the flags reflects
the fact that an operation occurred. Despite the fact that
nothing changes in the operands, this is a very handy in-
struction. It appears in counting loops, and string search
routines - for the very reason that it does not destroy the
information that you are looking at, yet gives some indica-
tion of what it is. An example of the opcode looks like this:

CPB CMPB
CP 3 CPI 3

;decimal digits
;BCD digits

Lifelines/TheSoftware Magazine, February 198322

Compare (subtract) the contents of the B register (or
the immediate data 3) from the A register - adjust
the flags to reflect the results. Note that Intel requires
a different opcode if the programmer wishes to com-
pare immediate data.

The remaining logical instructions perform the software
equivalents of hardware logic. In these instructions, as
with Compare, the implicit destination is the accumula-
tor. The second operand can be immediate data or one of
the standard operands. Here are some examples (When
Intel requires the use of a different opcode with immedi-
ate data, I have listed it directly below the basic form of the
opcode):

AND (HL) ANAM
AND 3 ANI 3 immediate

data opcode
Logically AND the contents of A and the contents of
the memory location pointed to by HL.

OR (IX + 4) ORA no match
OR 5 ORI 5 immediate

data opcode
Logically OR the contents of A and the contents of
the memory location pointed to by IX, offset by a dis-
tance of 4.

XOR C XRA C
XOR2 XRI 2 immediate

data opcode
Logically exclusive OR the contents of A with the
contents of the C register.

Block Compare
The Z80 has a special version of the compare instruction.
Similar to the block move instruction, the Block Compare
instruction can automatically address a block of memory.
Comparing the contents of the current memory location
with the contents of the accumulator, it will automatically
search through the selected memory block. There are a
number of conditions that will terminate the progress of
the instruction. These include reaching the end of the
memory block, or finding a match between data in mem-
ory and the accumulator data. Block Compare can move
forward (up) or backward (down) through memory. It is
extremely useful when searching through memory for a
particular piece of information, and can be tailored to any
number of sort, match, or compare routines.

Three pieces of information must be defined before using
the block compare. The A register must contain the seed
data - the data that you are looking for. The HL register
pair must contain the starting address of the memory
block that is to be searched. The register pair BC is a
counter that may contain the number of times the com-
pare loop should be repeated. If the instruction is struc-
tured to perform just one compare at a time (non-loop-
ing), the contents of BC is arbitrary. Once those three
pieces of information are in place, the block compare can
be directed in four ways. The opcodes are as follows (oper-
ands are implicit):

CPI no match
Compare A with the memory location at (HL), then
increment HL, decrement BC and stop (ie, do not
loop).

Lifelines/The Software Magazine, Volume III, Number 9

CPIR no match
Looping version of CPI, continues until the contents
of A matches the contents of the memory byte at HL,
or until BC is zero.

CPD no match
Compare A with the memory location at (HL), then
decrement HL, decrement BC and stop (ie, do not
loop)

CPDR no match
Looping version of CPD, continue until the contents
of A matches the contents of the memory located at
(HL), or until BC is zero.

In future sections discussing programming techiques,
there will be examples incorporating the block compare
instructions. For now, let's move on to the roundabout in-
structions, shift and rotate.

Shift and Rotate
Shift instructions allow the programmer to shift data
through an eight bit register or memory location, moving
zeros into the empty bits that are left behind the shifted
data. You are allowed to choose the direction that the data
is to be shifted to. Each shift, left or right, will move all of
the data in the addressed byte one bit to the left (or right).

Shift operations always include the carry bit as part of the
operand. Like the poor relations that always seem to hang
around, the carry bit is there to catch whatever is dumped
out of shifted data byte. During a shift left, the high order
bit (bit 7) is shifted into the carry bit. The low order bit (bit
0) goes into the carry bit during a shift right. Unlike rotate
instructions, shift will dump the information that is
shifted out of the carry bit into a silicon void, never to be
heard from again.

The shift instructions back fill with zeroes. In other words,
the Z80 puts a zero into the bit that is on the end of the ad-
dressed data byte. If the program calls for eight consecu-
tive left shifts, the shifted data byte will contain all zeros
after the last shift. (This is one very slow way to clear a reg-
ister). This is what the mnemonics look like:

SLA B no match
Shift Left (Arithmetic) the contents of the B register
(bit 7 is shifted into the carry bit, bit 0 is filled by a
zero).

SRL (HL) no match
Shift Right (Logical) the contents of the memory lo-
cation addressed by HL (bit 0 goes into the carry bit,
bit 7 becomes zero).

In addition to shift left and shift right, the Z80 has an
instruction called shift right arithmetic. In this case,
the Z80 does not back fill with zeroes, but replaces
the upper most bit (bit 7) with the value of the bit
before the shift began. This is useful when dividing
a signed number by two. A regular shift right would
replace the value of the seventh bit (the sign bit) with
zero, destroying the original sign of the data - and
drastically altering results of the arithmetic
operation. The shift instruction can be used with
any of the eight bit registers, and with memory
location that is pointed to by HL or one of the index

(continued on next page)

registers. Here is an example of this:
SRA (IX + 7) no match

Shift right arithmetic the contents of the memory lo-
cation pointed to by IX (plus an offset of 7). Bit 7 re-
mains the same, preserving the sign of the original
number, bit 0 goes into the carry bit.

After a shift instruction, the state of the carry bit can be
tested to determine its value. It is a bit awkward, but by
implementing the appropriate number of shift instruc-
tions, the programmer can effectively look at the value of
any bit within the addressed byte, after shifting it into the
carry bit. However, there is a much simpler way to do this.
The Z80 instruction set includes a test instruction which
can look at the state of any bit within the eight bit registers
or in any byte of memory. I will cover the operation of
these instructions in a future section.

Rotate Instructions
Rotate instructions are used to move the bit pattern of the
addressed byte through that byte and, optionally, the
carry bit. The data can be rotated to the left or to the right.
Data that is rotated out of one end of the byte is rotated
back into the byte at the opposite end. If the carry bit is in-
cluded in the rotate instruction, it takes the position of a
ninth bit. None of the original data is lost, it is just reposi-
tioned. Rotate instructions can be used by the program-
mer to inspect different bits within a byte. The appropri-
ate number of rotate instructions move the bit into the
carry flag where a conditional test of the carry flag deter-
mines the state of the bit.
Any one of the eight bit registers can be rotated. In addi-
tion, the memory byte addressed by HL, IX, or IY can be
rotated. This addressing flexibilty is in contrast to the 8080
rotate instructions which are limited to the accumulator.
There are four basic mnemonics for the rotate instruc-
tions. They are:

RL A RAL
Rotate Left the A register, include the carry bit (bit 7
is moved into the carry bit, carry bit was moved into
bitO)

RLC C RLC (A only)
Rotate left circular the C register, move the value of
bit 7 into the carry bit, and into bit 0. (The 8080 can
only rotate data that is in the A register)

RR (HL) RAR (A only)
Rotate right the memory location at (HL), include
the carry bit (bit 0 moves into the carry bit, carry bit
was moved into bit 7).

RRC (IX + 0) RRC (A only)
Rotate right the memory location at (IX), exclude the
carry bit from the rotation loop.

Personally, I find these four mnemonics confusing. My
first reaction to the mnemonic RLC is to assume that it in-
cludes the carry bit in the rotation, whereas RL merely
moves bit 7 into the carry flag, but does not move the carry
flag back into the addressed byte. However, Zilog chose to
use the letter C to designate Circular. No doubt meant to
imply that the rotation is contained within (circular to) the
addressed byte.

The Z80 has a novel form of the rotate instruction that

swaps information between the A register and the mem-
ory location addressed by the HL register pair. It is de-
signed to swap nibbles - BCD digits, and affects the entire
addressed byte but only the lower nibble of A. It is called
Rotate Right (or left) Digit, and I have yet to find an appro-
priate use for it. The BCD digits of the addressed memory
byte are rotated left or right, the displaced nibble goes into
A, with the old contents of A filling in the blank nibble at
the memory location - sounds confusing enough. The
mnemonics look like this:

RLD no match
Rotate the BCD digits left (lower nibble of A goes into
the lower nibble of the memory location, old lower
nibble of the memory byte goes into the upper
nibble of the memory byte, and finally, the old upper
nibble of the memory bytes goes into the lower
nibble of A. The upper nibble of A is not affected.)

RRD no match
Rotate the BCD digits right (upper nibble of the
memory byte is rotated into the lower nibble of the
memory byte, the displaced lower byte moves into
the A register, and the old contents of A rotates to the
vacant upper nibble of the memory byte. The upper
nibble of A is not affected)

There must be some rational reason for the existence of
this instruction. On the other hand, it might be an undoc-
umented instruction that was 'found' and then promoted
as a feature. . .
Enough speculation. In an upcoming issue this tutorial
will discuss jumps, conditional jumps, and call.s These
are the instructions that let you alter the program counter,
and consequently, the flow of your program. If you
thought unsigned shifts could throw off a program, wait
until you see what a misdirected jump can do.

A PROFESSIONAL SYSTEM
ATA P .C . PRICE

$2995
TURNKEY S-100 SYSTEM

FEATURING:
Integrand 10 slot Teletek Systemaster SBC

enclosure 2 Parallel & Serial Ports
2 8" D.D., D.S. Drives CPM™ 2.2 Installed
ADDS 3A Viewpoint Terminal

Full Teletek line available. Multi-user & Turbodos™
options can be added. Other S-100 products,
printers, peripherals, personal computers, and
CPM™ software products available at 15-20%
above wholesale cost. Full service and repair.
Workshops and classes held regularly.

TOTAL ACCESS
SUITE 202, 2054 University Ave.

Berkeley, California 94704
415-652-3330 ext. 346

24 Lifelines/TheSoftware Magazine, February 1983

Feature

Another Chapter In The
Continuing Saga . . . BASIC/Z

Jethro Wright
printed at the top of each page.

Unfortunately, BASIC/Z does not
support full screen editing and offers
a line editor almost identical to that
supplied with MBASIC. Unlike the
product from Microsoft, BASIC/Z
does include separate global search
and replace functions, to supple-
ment its intrinsic editing facility.
Search strings can even have imbed-
ded wild card characters.

An almost revolutionary enhance-
ment is the Config command which
modifies BASIC/Z .COM and OVL,
once again allowing the user to oper-
ate a system that is friendlier and
more convenient to use. Certain con-
sole control characters can be re-de-
fined, as well as the default param-
eters for both console and printer.
You even have the option of enabling
special interception of fatal CP/M
BDOS errors - Bad Sector, R/O, and
Select - if any occur while BASIC/Z is
running. As stated above, BASIC/Z is
a compiler, another feature accessi-
ble while in the executive mode. Its
operation is simple to master, like all
the other commands in BASIC/Z's
executive repertoire. I was dismayed,
though, when I found that no provi-
sion had been made for a subsequent
link edit step. The linkage editing
process promotes the development
of pre-tested, relocatable, object li-
braries, so that writing programs be-
comes easier and less error-prone,
over the course of time. That's my
personal opinion, of course, though
BASIC is often popular because of its
suitability in providing "quick and
dirty" solutions to many problems.
So perhaps the lack of a linker will be
good news to some few folks.

Programmatically. . .
The BASIC/Z run-time environment
is like that of other popular BASIC
language products. RUN/Z.COM is a
static, object loader/library similar to
BRUN.COM for Microsoft's BAS-
COM. This program is explicitly in-
voked to load the user's compiled,
object program so that a fixed

(continued on next page)

PATCH.BZO is another separate util-
ity included to simplify the eventual
issue of program maintenance.
RUN/Z and BASIC/Z can be interac-
tively updated by the user, to incor-
porate "bug fixes' as distributed by
Systemation via its Software Infor-
mation Bulletins.

The final program of the distribution
set is TR/III.BZO, a special conver-
sion utility that will convert pro-
grams written for BASIC/S - running
under MDOS from Micropolis. This
particular program will not be dis-
cussed in this article.

BASIC/Z Itself
BASIC/Z .COM and its attendant
overlay file require a minimum TPA
size of forty Kbytes, a CRT terminal, a
single disk drive, and CP/M 2.XX, for
program development. Once load-
ed, it responds to a command set
which is similar to - yet different
from - the ubiquitous MBASIC sys-
tem from Microsoft. However,
BASIC/Z's designers have placed a
greater emphasis on providing an in-
teractive environment. The most
prominent example of this empha-
sis is the automatic syntax checking
feature. As each line is entered into
its program buffer, BASIC/Z will in-
spect that line for proper syntax and
immediately enable its edit mode if
the line doesn't pass its test. When a
source program is loaded from disk,
all invalid lines will be deleted unless
a special command switch is applied
to the Load command. The same
Load command switch will also in-
clude all necessary line numbers for
programs created using a standard
program editor.

The speed at which programs are
displayed on the system console can
be controlled. Since any key will tem-
porarily stop the action, it's a much
simpler matter to display a long pro-
gram at a pace that suits the user.
Listings sent to the printer are prop-
erly paginated, with the program's
title and an optional program header

When I was offered this assignment,
my first reaction was: "What? An-
other BASIC?". After all, software
vendors offer such a wide selection
of different "flavored" BASIC's that I
wasn't sure whether the world was
ready for another. In spite of this I
took up the challenge and the follow-
ing is my response to that challenge.

The Package
BASIC/Z arrives from Systemation,
Inc. on a single density 8" diskette
which contains six program files, ac-
companied by a 250 + page reference
manual. BASIC/Z is a native-code
8080/Z80 compiler for CP/M 2.XX
computer systems. This environ-
ment is segmented into three parts:
an executive, a run-time, and an in-
stallation component.

The BASIC/Z .COM and .OVL files
provide the initial level, where pro-
grams can be created, modified,
compiled, and displayed. These op-
erations are facilitated by a set of
nearly forty commands that cover
virtually all the tasks necessary.
There is even a Config command that
allows an individual to tailor the sys-
tem, to better utilize the machine
running it.

RUN/Z.COM, invoked through the
BASIC/Z executive module, loads
your object file after it's been pro-
cessed by the compiler. The file con-
tains all the general-purpose rou-
tines for string-handling, arithmetic,
and input/output that would be re-
quired by any standard program.

INSTALL/Z.BZO is an independent
BASIC/Z program that modifies
RUN/Z.COM to support certain spe-
cific I/O features found on most com-
puters using the BASIC/Z package.
These features can then be accessed
or manipulated through special com-
mands in the running program. The
special keywords can activate video
attributes, position the cursor, or
take advantage of the editing capabil-
ities found on all popular CRT termi-
nals.

Lifelines/The Software Magazine, Volume III, Number 9

one delimiter of a logical record: a
carriage return/line feed sequence -
and only one record type: a string
type. Therefore, there is no limitation
on the contents of a given record, as
long as it doesn't contain a <cr/lf>
pair. Random files get a bit hairier,
since there are two sub-types to con-
tend with: BASIC/Z random and
Unfmt random. BASIC/Z random
files have an invisible one-hundred
twenty-eight byte header as record
zero, that contains pointers to each
record written to the file. These files
can have logical records of any allow-
able size, but if larger than two-hun-
dred fifty bytes, the Sizes statement
must be explicitly involved to declare
the maximum length. Clearly, this is
the most flexible file I/O mode as a
variety of options are available for re-
trieving the full range of data types
processed by BASIC/Z. Unfmt ran-
dom mode restricts the logical record
size to one-hundred twenty-eight
bytes. This mode is offered to estab-
lish portability between BASIC/Z
and other language systems.

While line numbers are absolutely
mandatory for a BASIC/Z program,
an alphanumeric label can be
equated to a line number, giving the
illusion of structured BASIC pro-
gram. These symbols can be the tar-
get of any BASIC/Z statement that
can change program control, like
Gosub <destination>, Goto <dest>,
or If <condition> Then <dest> Else
<dest>. In a similar vein, multi-line,
user-definable functions are sup-
ported, as well as thirty-two assem-
bly-language subroutines. BASIC/Z
also has the full complement of itera-
tion structures: the Do/Until,
While/Wend, For/Next loops. Two
potentially abusable, yet handy
enhancements are the Push <dest>
and Pop statements. These
statements facilitate program stack
manipulation, as available in
assembly language programming, so
that error handlers can more
efficiently direct program flow
control. Unfortunately, if these state-
ments are used indiscriminately, a
totally incomprehensible rat's nest of
a program will result.

BASIC/Z has a few truly unique
verbs like its Deer and Incr state-
ments, that decrement or increment,
respectively, a numeric variable. A
feature on the verge of remarkable is
the Sort statement, which will order
any of BASIC/Z's array variables in

either ascending or descending se-
quence. Then, of course, there are
the special video mode statements.
The user can select the reverse video,
blink or normal video renditions or
erase to end of line or end of screen.
There is even a special two argument
Tab clause for the Print statement
that implements direct cursor ad-
dressing.

Finally, there's the subject of debug-
ging, an area where most compilers
fail, since few vendors supply the
proper tools or enough data about
the internals of their products to al-
low meaningful run-time debug-
ging. While Systemation has decided
not to "burden" BASIC/Z users with
internal specifications on their com-
piler, they have at least included a
special Debug statement that will
monitor a selected range of line num-
bers - or the entire program - permit-
ting greater programmer control in a
real-time situation. There are 4 types
of Debug statement, the most impor-
tant of them being the single-step
type that causes program execution
within the desired range to execute
one line, then dump the contents of
up to four scalar variables on the con-
sole.

Documentation
I received Version 1.01 of the
BASIC/Z compiler so that only a pre-
liminary manual was available for in-
spection. While bound in a nice,
standard sized, three-ring binder, its
contents definitely were not the last
word in documentation. It was
printed on an inexpensive dot-matrix
printer, with no page numbers and
therefore no index. A final produc-
tion version is being prepared, that
will hopefully remedy some of these
deficiencies; it is reported to include
BASIC/Z programming examples as
well. This manual will be provided at
no cost to present purchasers of the
system. In spite of these comments
the documentation is satisfactory for
those already familiar with the idio-
syncrasies of other BASIC language
products.

The Wrap Up
Throughout this article, I have often
referred to Microsoft's BASIC lan-
guage products, since they're among
the most popular items on the soft-
ware market. While I have my own

portion of memory is always inacces-
sible to user programs. The advan-
tage of this arrangement is found in
the special INSTALL/Z utility that
can patch RUN/Z.COM to support
direct cursor addressing, screen edit-
ing commands, advanced video at-
tributes, printer page parameters,
and fatal BDOS error trapping.

Some of BASIC/Z's keywords are
compatible and syntax is the same as
found in the other BASIC language
processors. Variable names can have
any number of alphanumeric charac-
ters. However, when it comes to ac-
tual data BASIC/Z takes a larger
stride away from the crowd. First,
there are Control variables that are
single-byte unsigned values. Next,
there are Control/D variables which
are double-byte, 16-bit unsigned
numbers. Integers, on the other
hand, are packed-BCD entities that
can be specified to be three to ten
bytes long. Real numbers are also
stored in BCD form and range in size
from four to eleven bytes in length.
Strings are allowed a length of zero to
two hundred fifty bytes. If the de-
fault allocation for either integers,
reals, or strings is inadequate, the
value may be changed by way of the
Sizes statement. Any data type may
be part of a Common statement as
long as the applicable type sizes
match. Arrays are allowed, though
without any memory-limited num-
ber of dimensions. Four dimensions
for numbers and two dimensions for
strings should be enough for most
"quick and dirty" tasks, especially
since specified arrays can be dynami-
cally allocated via the Ddim and
Erase statements.

Character I/O is performed through
Print and Input statements when
whole lines are being manipulated.
Output can be re-directed to the
printer or console exclusively, to both
simultaneously, to a null device, or to
a pre-declared spool file. Input from
the console can be edited interactiv-
ely with a series of nine cursor move-
ment and editing keys. Instead of im-
plementing a Print Using statement,
BASIC/Z has a separate Fmt function
that generates an edited string from
the numeric argument passed.

Disk I/O under BASIC/Z takes some
getting used to. Two primary types of
files are recognized: random and se-
quential. Sequential files are very
straightforward in that there is only

Lifelines/TheSoftware Magazine, February 198326

crease by a factor of ten due to this
difference. I don't see this as being
particularly significant to the major-
ity of potential BASIC/Z users. Im-
portant also is the fact that there is no
licensing agreement required for dis-
tributing compiled BASIC/Z pro-
grams. That alone says quite a bit for
this product.
All things considered, BASIC/Z is
worth the time and effort spent
learning to master it. I find the unfa-
miliarity of some of its enhance-
ments to be the only real drawback in
using the system. I hope we continue
to see it mature over the course of
time.

output will paginate properly. These
factors go a long way towards simpli-
fying the I/O interface, and thereby
making programs easier to write.
BASIC/Z definitely has an adequate
repertoire with which to perform in
any situation where MBASIC would
be used. Its enhancements certainly
justify the conversion effort of some-
one who does not have a very big in-
vestment in MBASIC code. Number
crunching, as required by many engi-
neering and scientific applications
would suffer, however, because
BASIC/Z's real numbers are BCD val-
ues and not true binary floating-
point numbers. Execution time for
complex calculations could easily in-

personal reservations about them,
they are clearly the standard by
which others are to be judged. Using
BASIC/Z, I have written a label writer
program that operates as well as a
comparable program I have been us-
ing which was written with
MBASIC. Since both are generally
I/O bound, there are no significant
parameters to distinguish either sys-
tem as superior.

It is notable that BASIC/Z has been
designed to acknowledge the exist-
ence of CRT terminals, something
that other languages fail to address at
all. Moreover the BASIC/Z user can
programmatically set printer form
length and width, so that all printer

TABLE 1
Facts & Figures Change of Address

Please notify us immediately if you move.
Use the form below. In the section marked
“Old Address,” affix your Lifelines mailing
label - or write out your old address exactly
as it appears on the label. This will help the
Lifelines Circulation Department to expe-
dite your request.

New Address:

COMPANY ’

STREET ADDRESS

CITY STATE

ZIP CODE

Old Address:

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Program Name:
BASIC/Z - an enhanced native-code compiler for
8080/z80 CP/M 2.XX-based microcomputers

Produced By:
Systemation, Inc., RO. Box 11, Richton Park, III.
60471

Cost:
$395.00 for a single-user license - no licensing re-
quired for distributing compiled programs

Distribution Kit Consists Of:
BASIC/Z.COM and BASIC/Z.OVL - a program de-
velopment executive and compiler;

RUN/Z.COM - the BASIC/Z run-time environment;

INSTALL/Z.BZO - special configuration utility for
RUN/Z.COM;

PATCH.BZO - BASIC/Z system updating utility;

TRIII/Z.BZO - MDOS BASIC/S to BASIC/Z conver-
sion utility program;

System Requirements
40 Kbyte minimum TPA, a single disk drive, a CRT
terminal, and a CP/M 2.XX-compatible operating
system

Reviewer’s Comment:
Good tool for one-of-kind, straight-forward applica-
tions where interaction I/O is important

Lifelines/The Software Magazine, Volume III, Number 9

Feature

The New PL/I
Bruce H. Hunter

ISAM and VSAM files were dropped. The functions that
may have found a use once or twice a decade were
dropped. So were some of the matrix functions and other
"niceties" that were less than essential. An ANSI commit-
tee was formed for the standardization of PL/I's new
subset. The committee (X3J1) standardized the new sub-
set, and it was named Subset G. The committee is very
active today, and so is the subset!

Subset G is easy to learn and easy to implement. It is still
the most powerful language available today for micros
and minis, and even more powerful in the sense that it is
available! The subset can be considered to be an improve-
ment over the original set in many ways. It is now truly
portable, and has a sufficiently compact compiler to run
on any 64 kilobyte system with a couple hundred K bytes
on disk.

Dealing with specific applications for a computer lan-
guage is essential for any programmer today in order to
utilize the most suitable language for the purpose.
Granted, PL/I is not a teaching language; BASIC and Pas-
cal are ideal for that. FORTRAN was the language of
choice for heavy duty scientific programming, but now
PL/I will do it better. And believe it or not, PL/I will write
business programs better than any language in existence
that I know of. I don't say this lightly. I write business data
base programs, and believe me, I searched a long long
time for the best language I could find. PL/I Subset G was
it. It serves very well as an engineering language, too. If
you deal with systems languages predominately, then
PL/M is more up your alley, but PL/I has most of the facili-
ties of PL/M! So you can do calls to BIOS directly without
having to revert to assembly language calls, and PL/I's
ability to manipulate storage gives you power you may
never have thought possible in a high level language.

Is it fast? Is it compact? If speed turns you on, a now
famous benchmark program published in September '81
of Byte ('A High-Level Language Benchmark" by Jim Gil-
breath) clearly shows PL/I's Subset G to be the fastest 8 bit
language available. Faster than C, faster than FORTRAN,
faster than RATFOR, faster by far than the BASIC com-
piler and very much faster than the Pascal or BASIC inter-
preter. The size of the code was more compact than any
language tested other than RATFOR. It was over 300 times
faster than COBOL and nearly three times more compact.
If execution time has been slowing you down, perhaps
you ought to take another look at PL/I.

Some of you may be looking for a language that is struc-
tured. For me it was a top priority. Well sir, PL/I IS struc-
ture, and it has the most versatile and varied types of
structure available. It has blocks (program structures that
can be entered from the top and exited at the bottom with-
out deliberate transfer of control). It has procedure blocks
(program structures that can only be entered by being
called, and automatically transfer control to the next exe-

There is a new PL/I, in two senses of the term "new." Digi-
tal Research's newest version of Subset G, and Subset G it-
self. PL/I has been the most powerful language available
for microcomputers for some time now, and its newest
version is more powerful yet.

Right now many of you may be thinking, "PL/I? Why on
earth would anyone want to get involved with that gar-
gantuan language!" Unfortunately, when most people
think of PL/I, they think of the giant language of two de-
cades ago, which has probably frightened off more people
than it has claimed. The language in its full set is awe-
some, if not awe inspiring. When many software authors
make reference to PL/I, they touch lightly on the subject,
making an inside joke about its size and inferring that it
would be a nice language to study if you had a lifetime to
devote to it. Others simply say, "I tried it and its works."
The language has suffered too long from ignorance of its
syntax and abilities. It has suffered unfairly from writers
not giving it the exposure it deserves. The time has come
to put it in the hands of the public rather than discourag-
ing them from using it.

Why get into PL/I in the first place? Well, this is what PL/I
can do. It crunches numbers as well as FORTRAN, (and
now better). It handles strings as well as BASIC, but with
more finesse. It has an exquisite structure like Pascal, but
even more flexible. It has the file handling ability and ag-
gregate structure ability of COBOL, but ever so much
faster and much much more compact. Code in PL/I, like
Pascal, can be poetry, a thing of artistry and beauty. It cre-
ates functions and throws pointers around like C. Its abil-
ity to do data structures, arrays, structures of arrays, arrays
of structures, and arrays of structures of arrays, etc., will
match C's anyday (if, indeed, you ever wanted to do that
sort of thing), but C is a mid level language and PL/I is
high level. It interfaces with data base managers and
screen formatters like a giant mainframe system. It creates
and links to macros like only an assembler's language can.
It does it all, and has a compiler that takes up less room
than Whitesmith's C. Can it do everything? Almost. Is it
worth the effort to learn a language this large? You'd be a
fool not to learn it. Is there a version of PL/I available for
micros and minis? Of course. It's called PL/I Subset G.
And Digital is coming out with an incredibly exciting new
version of Subset G soon which will really "blow you
away."

A couple of decades have gone by since PL/I was first im-
plemented. The language seemingly dropped out of the
main stream while COBOL, BASIC, and a little more re-
cently, Pascal have come into dominance. In the mean-
time, dedicated programmers needing a powerful and
versatile language have encouraged the use of PL/I on
minis and super minis and micros as well. The language
was trimmed down from the figurative physique of a Rus-
sian weight lifter to that of a lithe long distance runner.

28 Lifelines/TheSoftware Magazine, February 1983

as well as an "iterative do while." There is even a "non-
iterative do" to hold execution into a mini-block! But
before going on any further about the many attributes of
PL/I, wait until you get into the newest version.

PL/I-80 version 1.4 and PL/I-86
Digital Research unquestionably feels that the future of
micro-computers lies in the use of 16 bit processors, at
least for the next decade. Their 16 bit laboratory has been
hard at work for some time now expanding the Digital line
into 16 bit. DRI's commitment to multi-user and net-
worked systems also has been monumental. The micro is
taking over the sacred ground of the mini and supermini.
However, the world of 16 bit multi-user systems like
MP/M-86 brings new problems as well as benefits. With
data now open to multiple users at multiple terminals,
how can sensitive information be protected? When a data
base is open to multi-users, files are now vulnerable to
both accidental and deliberate damage, and sensitive in-
formation can be read by people who shouldn't have ac-
cess to it. It is clear that file and record locking has become
a necessity.
Digital's recent language releases have been in both 8 bit
and 16 bit versions. They have the features of file and rec-
ord locking, and the newest version of PL/I is no excep-
tion. Files opened in PL/I now can be "locked", "shared",
or "read-only". Files opened in the default mode are
"read-only" and cannot be used by other users. "Shared",
of course, will allow universal free access. Passwords can
also be used. With the passwords come three levels of pri-
vilege: "read", "write", and "delete". With "read", you
must use the password just to read the file. "Write" means
the file can be read, but a password must be used to write
to the file. "Delete" will allow free reading and writing,
but the password is now required to delete the file. In ad-
dition, there are functions to lock and unlock individual
records. Not only will these protect sensitive and privi-
leged information, but they also protect a record from be-
ing accessed while being altered (updated) within a multi-
user environment. The password is part of the file name:

A<B:MYPROG.COM;JBOND
File protection is handled in the environment section of
the open statement, and the password is assigned in the
title section.

OPEN FILE (F_ 1) DIRECT UPDATE ENV
(SHARED,P(D),F(128))

TITLE ('B:INV.DAT;HIDE');
Here is a file that is opened for random update in the
shared mode that will require a password ("hide") for de-
letion.

Anotherissue to be addressed is Intel's 8086 family of com-
puter chips. We all know of the 8086 16 bit microprocessor.
It is a part of Intel's third generation of processors, and
there is a super chip to go with it called the 8087, an 80 bit
word math processor. There are few adequate superla-
tives to describe the incredible power of this state-of-the-
art number cruncher. The problem: creating software that
is ready to make use of this phenomenal processor. The
new versions of PL/I will emulate 8085 operation until the
16 bit version and the chip itself come together.

(continued on next page)

cutable line after the calling statement) . It has functions as
well (a form of procedure that is called and returns a
value). And, all of these program structures can have glo-
bal or local variables! Procedures can be external to the
code (entry or public). The value of a variable can be
passed to a procedure and operated upon with or without
changing its value, by reference or by value. That is, it can
change the value of the variable as it is stored or leave it
alone. So if you like ALGOL-type languages, this is one of
the best.
What PL/I can do with arrays is nothing short of un-
believable. It has two data structures. Not only the usual
lists, arrays, and tables, PL/I has aggregate data structures
as well. The aggregate data structure is a grouping of vari-
ables of the same and/or different types into a single data
entity. It is similar to a Pascal Record or a COBOL Record.
For example,

declare
1 act structure (3000),

2 name character (32) varyng,
2 account number fixed,
2 address,

3 street char (32) varying,
3 city char (20)varying,
3 state char (2),
3 zip fixed;

Any reference to the account structure by the name
"act structure" will deal with the entirety of the data
above. It can be taken from or put out to disk file simply by

read file (act.dat) to (act structure);
Now couple this power with the ability to put structures
into an array. The declared structure above is a 3000 ele-
ment array. The structure could just as easily have held an
array. PL/I arrays can be moved in an entire "block'.

account mat = act structure;
This moves the entire 3000 element array "act structure"
to the 3000 element array account mat. The bounds of
the array may be negative, and arrays can start at any inte-
ger value. There are functions to return the high and low
bounds of arrays, and the wonders go on and on.
PL/I's files are varied and powerful. All I/O is a file, and
any device that can be patched into the operating system is
addressable as a file. Files can be stream (sequential) or
direct (random) and ample facilities are available for
keyed files (files to carry the keys of other files). Keyed
files provide the mechanism by which data files can be
sorted and searched. Without keyed files, management of
the data base is impossible. And PL/I can be tied to a num-
ber of data base managers, including Digital Research's
new Access Manager. That means that the significant loss
of ISAM and VSAM files from Subset G is no longer an in-
convenience, because the ability to couple PL/I with a data
base manager will buy back any loss in spades and then
some.
Branching and decision-making in PL/I is an art form. The
"if-then-else" is nestable to incredible depths and
combinations. 'If-then-else-if" is easily implemented, and
the use of "null else's" allow unbalanced nesting. PL/I has
a "labeled goto" that will branch just about anywhere. The
label can be a constant or a variable, and it can be sub-
scripted. There is both a "do while" and an "iterative do"

Lifelines/The Software Magazine, Volume III, Number 9

SUPER NUMBER CRUNCHING is now available on
micros, thanks to the existence of math processors. PL/I is
now ready for them. In the last version of PL/I-80 1.3, the
maximum precision available for floating point math was
binary 24 (16777216). For my business and engineering
programing I never had any problem with that, but I have
a friend who is a statistical programmer, and he was for-
ever using FORTRAN for double precision when he
would rather have been programming in PL/I. Now there
is an answer to his problem. The newest release from Digi-
tal has double precision. This powerful data type has a
precision of up to 53. No typo, that is really it, 53! The ex-
ponent was a minimum of 38 for single precision before,
but now it is a whopping 308. Good old Carl Sagan doesn't
need to be limited to "billions and billions" anymore. He
can come out with "billions times billions times
billions. . .

Just for the record, Microsoft's FORTRAN-80, ANSI '66,
has a double precision to 16 digits and an exponent of up
to 38. What seemed phenomenal before now seems ordi-
nary. That is the nature of our rapidly changing micro-
processor technology. When future releases of PL/I inte-
grate with a functioning 8087 to take full advantage of the
80 bit word, the precision and exponent will again become
greater.

I have had the privilege of being one of the first consul-
tants outside of Digital to read the advance documenta-
tion on the new versions. It is the most exciting technical
reading I have seen in a very very long time. The first big
surprise is it is good documentation. In fact, it is extremely
good documentation! I have never been bashful about at-
tacking the technical obscurity of Digital's manuals. (I did
not coin the phrase "Digital has never been accused of hir-
ing writers," but I certainly have used it enough.) But we
are looking at a new Digital as well. Carmen Governale,
the Product Marketing Manager of the Language Divi-
sion, has insisted on and gotten the best documentation I
have seen yet. It is extensive, it is clear, and it is well writ-
ten. The language manual and programming guide ac-
count for a full inch and three eighths of paper, but there

was no problem reading through the new language man-
ual in a single evening. I am in the literal middle of writing
a book on PL/I Subset G, called "A 'Basic' Approach to
PL/I' and one of the things I have been trying to shoot for
is CLARITY. That is the way this manual comes across,
and it's great to see.

The first release of the new PL/I will be the 8 bit version
1.4. It has been in Beta test for some time now, and as of my
last conversation with DRI, it is only waiting for the final
documentation to be completed. The eight bit version 1.4
is an emulation of the 16 bit version, PL/I-86. This
thoughtful feature guarantees full compatibility with both
versions. Compile it to 8 or 16 bit, no difference, no
changes in the source code.

Pictures! The documentation has pictures. Illustrations
abound. Now you can really see a linked list. Data aggre-
gates are real and visual. Memory and buffer maps are
truly maps, not just descriptions. These additions amelio-
rate the learning of the material which gets you faster into
actual programming. A glance at the Programmer's Guide
shows not only the old programs that existed in the 1.3
version, but many new ones with more tables and pic-
tures for clarity. You should find it very impressive and
readily usable.

We find ourselves in a new era of micro-computing. Pro-
cessors like the 8085, 8086, and 8088 have given us mem-
ory that is limited only by the availability of card slots in
the card cage and our ability to pay for memory boards.
Fully integrated multi-user systems are plentiful, with
many below $10k. The 8085/8088 co-processor in my S-100
is old hat now. Pascal and BASIC interpretors/compilers
that used to provide all the programming power 8 bit 64K
machines could handle are now just not going to hack it.
Today, serious programming applications will have to
look for more powerful languages. PL/I is here and readily
able to give that kind of power.

So, if you are a serious programmer or thinking about be-
coming one, what are you waiting for? Take a look at PL/I
Subset G. You will sooner or later. Why not now? Q

Lifelines/TheSoftware Magazine, February 198330

Volume 91, Catalogue & Abstracts

CP/M Users Group
COMPILED BY: Ward Christensen

Catalogue

DESCRIPTION: Microsoft FORTRAN programs:
(1) Spectrum analysis programs by Victor DePinto.
(2) Print formatting programs by Lawson F. Pierce
for Microsoft FORTRAN and M-80.
See ABSTRACT.091 for details.

NO. SIZE COMMENTS

CONTENTS OF CP/M VOL. 91
Abstract of volume contents.
CRC of all files on disk
CRC generator (CRCK *.* F)
(1) Executable arithmetic functions.
(1) Arithmetic functions.
(1) Submit file.
(1) Disk file I/O in BASIC.
(l)Executable FFT program.
(1)1024 point FFT.
(1) Submit file.
(1) DMP2 driver.
(1) DMP2 driver.
(1) Filename getter.
(1) Plotter plot routine.
(2) COM of PRINT80.FOR
(2) DOC PRINT80.FOR
(2) Compresses M80 PRN files
(2) REL of PRINT80.FOR
(2) COM of PRINT81.FOR
(2) Print FORTRAN and ASM files
with page ejects and titles
(2) REL of PRINT81.FOR
(1) Checks for abort (Q) command.

PRINT81.REL
QCHEK.MAC
SPECTRUM.DOC (1) Documentation.
TTYPLOT.FOR
TWIDDLE.FOR
UTIL.FOR
UTIL#H.SUB
UTIL#T.SUB
UTIL-HI.COM
UTIL-TTY.COM
WIND.FOR

(1) Printer plot routine.
(1) Generates twiddle factor table.
(1) Utility program.
(1) Submit file.
(1) Submit file.
(1) DMP2 version of UTIL.COM.
(1) TTY version of UTIL.COM.
(1) Window functions.

NAME

-CPMUG.091
ABSTRACTOR
FILES.CRC
CRCK.COM
ARIT.COM
ARIT.FOR
ARIT#.SUB
DISKIO.BAS
FFT.COM
FFT.FOR
FFT#.SUB
HI.FOR
HIA.MAC
NAME.FOR
PLOT.FOR
PRINT8O.COM
PRINT8O.DOC
PRINT80.FOR
PRINT80.REL
PRINT81.COM
PRINT81.FOR

(continued on next page)
31Lifelines/The Software Magazine, Volume III, Number 9

Abstracts DOES THE SOFTWARE "DROP IN": Yes.
HOW EASY IS THE CODE TO MODIFY: Commented
FORTRAN and Assembly source code is provided.

(2):
File Name: PRINT80.FOR,PRINT81.FOR

PRINT80 - Compresses M80 PRN files
PRINT81 - Prints FORTRAN and ASM Source files
with page ejects and titles

AUTHOR: /SUBMITTED BY:
Lawson F. Pierce
2516 Sunnybrook Dr
Kalamazoo MI 49008

THIS PROGRAM IS PUBLIC DOMAIN BECAUSE:
Submitted by author; author's approval

WHO WOULD THIS PROGRAM BE USEFUL TO: All
CP/M users [who use M-80 orFORTRAN-80 from Micro-
soft]
BRIEFLY DESCRIBE THE PROGRAM FUNCTION:

PRINT80 - prints M80 files with choice of Head-
ers or no headers, Filename in header, and com-
presses out surplus blanks so it will fit on a nar-
row printer.
PRINT81 - prints FORTRAN and ASM files with
page ejection so that Subroutines can be paged
separately. Ejection flags do not interfere with
Assembler or Compiler
SeePRINT8O.DOC

WHERE IS FURTHER DOCUMENTATION AVAILA-
BLE: PRINT8O.DOC; Modified Extensively for better or
worse from EDITM.FOR - CPMUSER 26.23

HARDWARE DEPENDENCIES: None

SOFTWARE DEPENDENCIES: STANDARD CP/M

SOURCE PROCESSOR: Microsoft FORTRAN

DOES THE SOFTWARE "DROP IN": yes
HOW EASY IS THE CODE TO MODIFY: Commented
FORTRAN file H

FILE NAME: (Note: All files submitted are part of the
spectrum analysis software package.)

FILENAME
ARIT.FOR
ARIT.COM
ARIT#.SUB
DISKIO.BAS
FFT.FOR
FFT.COM
FFT#.SUB
HI.FOR
HIA.MAC
NAME.FOR
PLOT.FOR
QCHEK.MAC
SPECTRUM.DOC
SPECTRUM.TEX
TTYPLOT.FOR
TWIDDLE.FOR
UTIL.FOR
UTIL#H.SUB
UTIL#T.SUB
UTIL-HI.COM
UTIL-TTY.COM
WIND.FOR

COMMENTS
Arithmetic functions
Executable arithmetic functions
Submit file
Disk file I/O in BASIC
1024 point FFT
Executable FFT program
Submit file
DMP2 driver
DMP2 driver
Filename getter
Plotter plot routine
Checks for abort command
Documentation
TEX input file
Printer plot routine
Generates twiddle factor table
Utility program
Submit file
Submit file
DMP2 version of UTIL.COM
TTY version of UTIL.COM
Window functions.

AUTHOR/SUBMITTED BY:
Victor DePinto
2627-148th Ave. S.E., Apt. 10
Bellevue, Washington, 98007

THIS PROGRAM IS PUBLIC DOMAIN BECAUSE: Sub-
mitted by author. I have checked with Microsoft, and they
say it is ok to submit the COM files compiled by
FORTRAN-80.

TO WHOM WOULD THIS PROGRAM BE USEFUL:
Useful in the fields of Signal Processing, Statistics, Mathe-
matics, Electronic Music, Physics.
BRIEFLY DESCRIBE THE PROGRAM FUNCTION: This
is a package of programs which perform the FFT and in-
verse FFT and perform various arithmetical manipulations
on signals as well as display the results.
WHERE IS FURTHER DOCUMENTATION AVAIL-
ABLE: Documentation is in the file SPECTRUM.DOC on
this disk. Further technical information on the subject of
Signal Processing may be found in textbooks such as Digi-
tal Signal Processing by Oppenheim and Schafer, available
from Prentice Hall.

HARDWARE DEPENDENCIES: 48k total RAM. Stan-
dard 80 column CRT terminal. Printer with at least 80 col-
umns. May optionally use the Houston Instruments
DMP2 plotter connected to a serial port (CP/M PUNCH
device).

SOFTWARE DEPENDENCIES: CP/M 1.4 or 2.x.

SOURCE PROCESSOR: Source code provided is for
Microsoft FORTRAN-80, and MACRO-80. COM files are
also provided. Compatible data files can also be written
and read in Microsoft BASIC 5.x.

Renew

We’re looking forward to hearing from any of
you March subscribers who haven’t called or
written. If your subscription started with
the March ’82 issue you should have received
a letter and reader survey from us, urging
you to renew. You can see that Lifelines/The
Software Magazine has given you value this
past year and we’re expecting your support
again. Don’t delay! Send your check right
away or get out your VISA or MasterCard
and call Lifelines/The Software Magazine
Subscription Dept, at (212) 722-1700. The
address is: 1651 Third Ave., New York, N.Y.
10028.

32 Lifelines/TheSoftware Magazine, February 1983

Product Status
Reports

The new software products and new
versions described below and on
page 00 are available from their
authors, computer stores, software
publishers, and distributors. Infor-
mation has been derived from mate-
rial supplied by the authors or their
agents, and Lifelines/The Software
Magazine can assume no responsibil-
ity for its veracity. Software of inter-
est to our readers will be tested and
reviewed in depth at a later date.

New

on the current company cash flow.
Program capabilities include access
to account information, comprehen-
sive aged trial balances, choice of
open-item or balance-forward post-
ing, automatic finance charge calcula-
tions, detailed audit trails, standard
reporting and customized state-
ments and letters. AR also offers an
extensive error detection feature.
Accounts Payable (AP) automates the
vendor payment process. It compiles
vendor reports, assists in taking ad-
vantage of discounts, calculates total
purchase amounts and automatically
prints detailed payment checks. In
addition, it generates up-to-the-min-
ute reports to help the user deter-
mine both immediate and future
cash requirements. Features include
access to vendor data including ven-
dor statistics, open-item posting,
automatic check-writing, detailed
audit trail, comprehensive payable
reports and customized checks and
payment advices. Error detection is a
standard feature.
Each of these programs is interactive
with the other. All operate with the
IBM PC under DOS. The financial
programs are priced at $600 each or
$1500 for the set of three.

accounting applications for use by
popular word processing, spread-
sheet and data base management
systems.
The Team Manager will be available
in Business BASIC running under
CP/M-80, MP/M, CP/M-86, MP/M-86,
MS DOS, PC DOS and XENIX. The
product will be available for single-
and multi-user configurations.

HALO ___________________________
Lifeboat Associates
Full color graphics for IBM PC rou-
tines callable from IBM or Microsoft
BASIC, PASCAL or COBOL for
drawing bars, boxes, lines, circles,
arcs, rotating, moving, defining char-
acter sets and filling shapes with
color. This is a full SIGGRAPH
"CORE" standard graphics package,
requiring IBM color graphics card for
color or monochrome card, if no
color is required. Cost is $150.

New

Products

GENERAL LEDGER, FINANCIAL
REPORTER, ACCOUNTS RECEIV-
ABLE & ACCOUNTS PAYABLE
Information Unlimited Software Inc.
These are the first three members of
IUS Inc.'s new six-program Financial
Management Series for the IBM Per-
sonal Computer. General Ledger and
Financial Reporter automate the
bookkeeping process from posting
individual transactions to producing
up-to-the-minute income state-
ments, balance sheets and financial
reports. A built-in text editor and var-
iable report generator allow users to
produce both financial and other
customized reports. Additional fea-
tures include access to account or
budget figures, audit trails, a flexible
chart of accounts, departmental
profit and loss statements, and year-
end closing of revenue and expense
accounts. The program also offers an
extensive error detection feature to
ensure data integrity and avoid
costly mistakes.
Accounts Receivable (AR) automates
the receivables function of any busi-
ness, compiling customer statistics,
calculating finance charges, generat-
ing customer statements and report-

Publication
CPM® Revealed by Jack D. Dennon
Hayden Book Company, Inc.
The book describes in detail the po-
tential of CP/M — the most popular
operating system for microcomput-
ers. It explains the technical aspects
of CP/M including the console moni-
tor, the system manager and the in-
put/output driver package and the
data structure of the CP/M disk. De-
tailed discussions of booting up, log-
ging in, changing memory size, map-
ping disk space, calling programs,
file handling and interfacing tech-
niques are included. Also included
are CP/M utilities and programming
exercises that a reader can use with
any CP/M based system. Available in
paperback for $13.95.

(continued on next page)

EZ-MAIL ________________________
Lifeboat Associates
Electronic mail through US Postal
Service Ecom network for .26
cents/page. Requires a modem, and a
modem control for asynchronous
transmission. Recommend AS-
COM, SMARTMODEM for asyn-
chronous transmission. Recom-
mend RBTE-80 for synchronous
transmission. Cost is $149.

THE TEAM MANAGER __________
Open Systems, Inc.

The Team Manager is a report writer
and data formatter. It allows a user to
create new reports using the data
files from Open Systems' accounting
applications. In addition, The Team
Manager can reformat data from the

Lifelines/The Software Magazine, Volume III, Number 9

discussions wound up hidden in
rather strange places. For example,
several interesting discussions of
style (Programming Style, Software
Maintenance, and Structured Pro-
gramming) appear at the end of the
chapter on "Loops". A separate
"Style" chapter certainly would be
justified, and could include similar
discussion from other parts of the
book. In addition, many of the dis-
cussions in the earlier parts of the
book are really somewhat advanced
topics to the average BASIC user,
while some of the most essential def-
initions, ones that should appear
early on and be very explicitly de-
fined, are not found until the later
chapters. In short, everything that
should be in the book is there, and is
well-explained, but the order of pre-
sentation is very poor.

Some of the definitions would ben-
efit from more detailed examples, es-
pecially graphic ones. For example,
PRINT formatting (TAB, SPC, punc-
tuation, etc.) is discussed in various
parts of the book, but nowhere are
there graphic examples of what the
various PRINT modes look like (how
TAB differs from SPC, how the use of
commas differs from the use of semi-
colons, and why). A set of sample
printouts showing the effects of vari-
ous print commands would have
been very helpful.

In summary, the book has some good
features and interesting discussions,
and is well-written. Unfortunately,
the organization is poor enough to
cause me to recommend against its
purchase by any BASIC user, particu-
larly at the considerable price of
$22.95. If the book was completely
reorganized and the topics presented
in a more logical and less confusing
manner, it might be a different story.
As it stands, however, the book is
neither a good tutorial nor a good ref-
erence book.

* * *
Advanced Concepts is more of a ref-
erence text than the Fundamental
book but it has many of the same
strong and weak points. The first
chapter discusses string functions
(CHR$, ASC, STR$, etc.), beginning
its discussion with nary a word of in-
troduction (in the preface, the author
points out that the Fundamental and
Advanced books are two consecutive
volumes of a four-volume set, but I

gramming which BASIC seems to
encourage - the tendency to com-
pose at the keyboard and to produce
one-dimensional programs rather
than thoroughly planning and orga-
nizing a program before starting to
write code. Happily, Giarratano dis-
cusses this in the very first chapter,
although I would have preferred
even more emphasis on the impor-
tance of this approach.

In the second and third chapters, the
book tells how to calculate with
BASIC (in essence, how to turn your
machine into an expensive calcula-
tor) and introduces many of the
BASIC functions, emphasizing the
mathematical ones. Mathematics-
oriented readers may have been
pleased, but I was puzzled to see
things like arctangent in the third
chapter of a beginning BASIC book.

The fourth chapter introduced the
concept of creating entire BASIC pro-
grams, followed by chapters entitled
Editing Commands, Input, Saving
and Retrieving Software, etc. Loops,
arrays, and subroutines were the last
topics discussed in the book. Appen-
dices included Error Messages,
ASCII Codes, descriptions of boot-
ing up the appropriate machines (ex-
amples in the book were prepared on
a DEC PDP-11 and an Ohio Scientific
Challenger 2P). Finally, a compre-
hensive and well-organized index
was included (one of my pet peeves is
a technical book with a poor index, or
none at all - this book passed that test
with flying colors).

First, let me list what I liked about the
book. The author is a talented writer,
and has an enjoyable writing style;
most of his definitions and descrip-
tions are clear and concise. The exer-
cise problems included in several
chapters are particularly good, very
appropriate for the subject matter
covered in the respective chapters.
The printing and format are pleasing
to the eye - an important quality.
And as I mentioned earlier, I liked
the emphasis on program organiza-
tion and the index.

Now to the faults, and there are some
big ones. My major complaint with
this book is its organization (or lack
thereof). To be frank, it's awful - the
book seems to flit from one topic to
another in nearly every chapter, and
several important definitions and

Books

Books
BASIC: Fundamental Concepts, by
Joseph C. Giarratano. Howard W.
Sams & Co., Inc., Indianapolis, Indi-
ana, 1982. 198 pages (8V2 x 11" paper-
back). $22.95.

BASIC: Advanced Concepts, by Joseph
C. Giarratano. Howard W. Sams &
Co., Inc., Indianapolis, Indiana,
1982. 214 pages (8¥2 x 11" paperback).
$22.95.

As an instructor of BASIC program-
ming classes for beginning and ad-
vanced students, I am always on the
lookout for well-written textbooks to
recommend to my students. Interest-
ingly enough, although the market-
place seems to be flooded with
BASIC texts, there are very few that I
recommend wholeheartedly. In my
opinion, such a text should aim to be
either a tutorial or a reference book -
it's hard enough to be a good example
of either of those types without try-
ing to be both. A tutorial should be
clearly written, proceed in an orderly
manner, and have lots of practical ex-
amples. A reference text should be
concise, include examples, and infor-
mation should be easily and quickly
accessible to the user; the format of a
reference text is extremely impor-
tant.
With the above criteria in mind, I
read the two new BASIC texts by
Giarratano. Both are printed in large
format paperback and are nicely laid
out. Not surprisingly, both have the
same general strengths and weak-
nesses. These are really Volumes 3
and 4 of a set of four - the second
book begins abruptly right where the
first ends, as if the books were origi-
nally a single volume that was dis-
sected neatly by the publisher.
Fundamental Concepts is of the "tu-
torial" variety. It begins with an inter-
esting history of BASIC and discus-
ses the essential concepts and philos-
ophy of the language. In particular, I
liked the discussion of flowcharting
and the emphasis on the need to
learn structured programming tech-
niques. I am constantly cautioning
my students (and myself!) to avoid
the "top-down" approach to pro-

Lifelines/TheSoftware Magazine, February 198334

scription of the objectives and output
of the program! And then a neat,
readable listing of the program itself,
with lots of REMs. Finally, a screen
display example and a printed
output list. Very complete!
Initial impressions of Volume 1
proved to be correct, and Volume 2
follows nicely in that tradition. The
unwritten theme of the book seems
to be that microcomputers have
something for every small business.
Many of the applications described
in the book are potentially useful to a
very broad range of businesses, and
Sternberg has provided a lot of an-
swers to the question "what can my
computer do for me?"
Written in Altair Extended Disk
Basic, the programs in the book can
be adapted, with minor changes, to
run on most other small business
systems. For instance, the BASIC
commands and statements are very
similar to those in Applesoft or
MBASIC. Sternberg has tried to
avoid compatibility problems by
eschewing uncommon BASIC terms
and those which tend to differ
widely between versions. In addi-
tion, subroutines are used exten-
sively, particularly for those state-
ments which may not be compatible;
in those cass, the user need only re-
place the given subroutine with one
more appropriate for his machine. A
glossary in the Appendix lists the
statements used, enabling the user to
compare them with those used in
other computers.

And here's how the three types of
users mentioned earlier can make
use of this book:

1. Small businesses. Most such users
are unable to afford outside com-
puter services, such as software con-
sultants, and most do much of their
own programming. The programs
listed can be used as is or modified*
slightly. Furthermore, there are
many useful ideas for use in other
BASIC programs, allowing an inex-
perienced user to see various state-
ments and techniques in the context
of a working program.

2. Microcomputer entrepreneurs. By
using the programs and ideas in this
book as a foundation, these users can
create "custom" applications pro-
grams for clients.

(continued on next page)

really think this volume should be
more stand-alone). Subsequent
chapters cover Exact Arithmetic Cal-
culations, Accuracy and Precision
(continuing the trend of mathemati-
cal emphasis), Files, and Direct
Memory Access (POKE and PEEK).
Then we're given the same Appendi-
ces that appeared in the first book,
and the book ends.
Like its predecessor, the Advanced
book suffers from poor organization.
Giarratano continues his tendency to
skip around from one topic to an-
other, even though most of the indi-
vidual discussions are adequate or
better. In particular, the Files chapter
is very poorly written, presenting
that important topic in a very confus-
ing manner. Again, a better-orga-
nized outline would have really
helped a lot.

Unfortunately, this book has a
broader and more important fault
not shared by its companion volume:
inappropriate emphasis on certain
topics. For example, the chapter on
exact arithmetic is an interesting
discussion of ways to get a very high
precision (40 digit numbers and the
like), but consumes 58 of the book's
214 pages. Throw in the following
chapter on accuracy and precision,
and we have used up nearly half the
book! While the existing chapters
may appeal to the hard-core
mathematicians among us, I can
think of a number of more appropri-
ate topics that could have been cov-
ered in more detail than they were
(print formatting, for example). And
lest any detractors think that I have a
prejudice against higher mathema-
tics, let me point out that I have a de-
gree in math and still think too much
emphasis was placed on it.
As must be obvious by now, I do not
recommend this book. The price of
the book (like its companion volume,
a rather steep $22.95) could be much
better spent elsewhere. Meanwhile,
if I ever find the definitive BASIC
text, I'll let you know.

* * *
BASIC: Computer Programs for
Business. Volume 2. By Charles D.
Sternberg, Hayden Book Company,
Rochelle Park, New Jersey, 1982. 376
pages, paper, $13.95.
The microcomputer has had a pro-
found effect on many segments of so-

ciety. The little marvels have pene-
trated the entertainment, educa-
tional, and information markets, and
more and more homes now house a
family computer. Nowhere has the
effect and future potential of com-
puters been more strongly felt than
in the small business sector, how-
ever. As computers have become
smaller, more powerful, and less
costly, more and more small busi-
nesses are finding them practical,
cost-effective ways of increasing pro-
ductivity and efficiency. Unfortu-
nately, these remarkable tools are
useless without proper software,
and software development has typi-
cally lagged well behind hardware
advances (can you think of any cases
where a machine was designed
around software, rather than the
other way around?).
Charles Sternberg's second volume
of BASIC Computer Programs for
Business is aimed squarely at the
small business sector. Like the first
volume, it presents a variety of pro-
grams designed to appeal to a wide
range of needs. The jacket of the
book states that it was designed for
"small businesses, microcomputer
entrepreneurs, and independent
consultants". Later in this review I'll
tell you how each of these groups can
benefit from this book.
A glance at the Table of Contents
gives an idea of the subject matter
covered: Marketing and Sales; Per-
sonnel; Administrative; Statistics;
and File Handling (data base man-
agement). More than 60 complete
programs are presented. And best of
all, the organization, format, and
usefulness of the book are top-notch,
as becomes evident rather quickly.

I first encountered Sternberg's books
at a local bookstore (the standard all-
purpose kind, but one with a rich
variety of computer books). I had
been given a gift certificate for my
birthday and was browsing through
my favorite shelf with glee. I hap-
pened to notice Volume 1 of this set
and began reading through it. My
first impression was that the format
seemed well-organized, easy to fol-
low, and - to coin an already over-
used phrase - "user-friendly". I
found a program similar to one I had
been developing and started reading
closer. Wow, a flowchart, and a rec-
ord format, and a nice, concise de-

Lifelines/The Software Magazine, Volume III, Number 9

3. Independent consultants. Nearly
any client's needs are served some-
where in this book. Again, slight
modification can produce a useful
program at a minimal cost.

Last but not least, the price is reason-
able in comparison with many com-
peting books. Computer books are,
in general, quite expensive, many of
them well over $20 in price (even for
paperbacks!). There's a lot in here for
$13.95.

New 8. Micromotion - Forth 79 ver 2 for
Z-80 CP/M & Apple Users

9. Precision BASIC ver 1.6
10. PRO-MAN (of American Soft-

ware) ver 5.0
11. STIFF UPPER LISP ver 2.9
12. T/MAKER III, version 3.0

Versions
1. ASCOM ver 2.20
2. BOSS financial Acctg

FULL SYSTEM & DEMO ver 1.15
3. BDS "C" Compiler ver 1.5
4. BSTAM for IBM PC DOS
5. dBASE II/PC

FULL SYSTEM & DEMO ver 2.3d
6. GrafTalk ver 105
7. Magic Print ver 1.22

Notice
The January issue was placed ir
the mail on January 5th. Due t(
changes in our production sched
ule, Lifelines/The Software Maga
zine, will be mailed the last week o:
the month preceding the curren
issue. This will take effect begin
ning with our March issue.

Do I like this book? Obviously. Do I
recommend it? Absolutely!

Reviewed by George H. Taylor

KIBITS

a :

HMM. HE JUST TOLD ME
TO WIPE OUT THE WHOLE
TEXT- BUT WHY?

AHA! HE MUNCHES
A SESAME SEED

BUN

J Vo ■
WHAT HE

3 TELLS ME-
NOT

WHAT HE WANTS

OHO! A SESAME
4EEP HAS BECOME
LOP EP IN MY
CONTROL KEY. . .

50 WHAT HE REALLY
WANTS 1$ A "Y M

BUT WHAT I
GIVE HtM IS
"CONTROL Y

WILL

Lifelines/TheSoftware Magazine, February 198336

OOPS!
Did I find anything to complain
about? Hah! Need you ask? Do hack-
ers have hangnails? Quickey on the
Televideo is forced to make use of cer-
tain function keys that generate a
three character code, and WordStar
isn't quite fast enough to swallow
them all when entered in rapid suc-
cession. Unfortunately, Raish Enter-
prises didn't catch this and assigned
those keys functions which people
do tend to jiggle quickly, such as
character delete, line scroll up, line
scroll down. Results? When over-
loaded, WordStar understands the
first two characters as a command
which it doesn't recognize, but treats
the third as an input character which
it writes into your text. This can scat-
ter unwanted characters around like
little mouse pellets. Not nice. If you
refrain from impetuous key jiggling,
this doesn't happen; however, I still
recommend that you make sure you
get an updated version which has
fixed this problem.
Our apologies to Mr. Sherman & our
readers for this error.

FILE U update and continue
editing

FILE E update and end
FILE X update and exit
FILE Q quit, no update
FILE C copy a file
FILE A read a file in (Append)

at the cursor
FILE R rename a file
FILE* delete a file
FILE P print a file
FILE F show file directory dur-

ing edit
In all the above examples, either up-
per or lower case characters have the
same effect.
Personally, I think Quickey is an enor-
mous improvement on WordStar,
and offers innumerable advantages.
By now you may ask, "Is there a
catch?" Well, yes, a small one. At
present, Quickey is only available for
Televideo terminals and computers,
although it will soon be implement-
ed on others that have plenty of func-
tion keys.

We inadvertently dropped a section
of Charles E. Sherman's December
1982 MicroMoneymaker's Forum.
The missing material, an important
part of his Quickey review, is printed
below. It should have appeared on
page 29, column two, after the para-
graph which reads "Word-right and
word-left tabs each get their own fun-
ction key, and so do scroll-up and
scroll down. Here again, HOME is an
amplifier."
HOME U scroll up one screen
HOME D scroll down one screen
The repeat command key can be
used with the scroll keys or up and
down arrow keys to provide continu-
ous scrolling.
It's all right there at your fingertips. I
find this a lot easier to use, and to
teach, than the way WordStar does
things. Quickey also offers a big im-
provement in the file handling com-
mands, which are all initiated by the
FILE key:

MAGIC PRINT
oOo

How Magic
Is Magic Pr in t 1"?

L i f eboa t Assoc ia tes
p ropo r t i ona l l y - spaced ,

pro fess iona l text f o rma t te r?

oOb
ROAM R Red

aKe. B£ae
Out MagtcP'itnt o ejiz

MvMtpte column pointing
And. page, ootnote s t oo ! ! !

. . . T rue , you love your high qua l i t y da isywheel p r i n te r . . .
Its sleek l ines, power , speed ... but do you make use
Of all its ab i l i t i e s such as t rue p ropo r t i ona l p r i n t i ng

bo ld face , unde r l i ne , doub le - s t r i ke , over -s t r i ke ,
s ing le character ke rn i ng and m ic ro cen te r i ng ,
accen t i ng and o ther good ies — f i f t y * in all .

Magic Print works with most any text editor or
word process ing p rog ram. Features i nc l ude :

•mu l t i p l e l ine page headers and f oo te r s
•p r i n t l ine left or r ight or cen te red

• l i ne -by - l i ne t r app ing of e r ro r s
•hang ing i nden ts and ou tden t s

•mu l t i p l e co lumn capab i l i t y
And for WordStar 1" users
p ropo r t i ona l p r i n t i ng

using WS commands !
For Mag icPr in t
Call L i f eboa t

$195 re ta i l ,
deals for

dealers
too

I

Lifeboat
The Standard For Fully Supported Software

1651 Third Avenue, N.Y., N.Y. 10028 (212) 860-0300
TWX: 710-581-2524 (LBSOFT NYK) • Telex: 640693 (LBSOFT NYK)

Copyright ©1982. by Lifeboat Associates
WordStar is a TM of MicroPro
Magic Print is a TM of Editype Sys.

LIFELIN
ES /The Softw

are M
agazine’"

1651 Third A
venue, N

ew
 York, N

ew
 York 10028

S
econd C

lass P
ostage Paid

At N
ew

 York, N
.Y.

